Skip to main content
Log in

Carbonate ions in apatites: Infrared investigations in thev 4 CO3 domain

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Fourier transform infrared (IR) spectroscopic investigations of precipitated carbonate apatites in thev 4 CO3 domain reveal the existence of five bands at 757, 740, 718, 692, 670 cm−1 which can be assigned to several distinct environments of the carbonate ion in the apatite structure. In order to identify these environments precisely, fluoridated and pure type A carbonate apatites (i.e., with carbonate ions in monovalent anionic sites) were examined. The bands at 670 and 757 cm−1 were attributed to type A carbonate and their relative intensity was found to increase when the carbonate content of the apatite diminished or when samples were heated at 400°C. Fluoridated apatites show only two bands, close to 718 and 693 cm−1, corresponding to type B carbonate ions (carbonate in trivalent anionic sites). The band at 740 cm−1 was revealed by heating the samples to 400°C. This is due to OH ions' hydrogen bonded to fluoride and to carbonate ions in an undertermined apatite site. Despite the low intensity of IR bands, investigations in thev 4 CO3 domain appear complementary to those in other carbonate vibrational domains and could be useful for a more precise identification of bone mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Okazaki M (1983) Fluoride ion-carbonate ion interaction in the IR spectra of fluridated carbonate apatite. Calcif Tissue Int 35:78–81

    Article  PubMed  CAS  Google Scholar 

  2. LeGeros RZ, Trautz OR, LeGeros JP, Klein E (1968) Carbonate substitution in the apatitic structure. Bull Soc Chim Fr (special issue) 1712–1718

  3. Elliott JC, Holcomb DW, Young RA (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int 37:372–375

    PubMed  CAS  Google Scholar 

  4. Termine JD, Lundy DR (1973) Hydroxide and carbonate in rat bone mineral and its synthetic analogues. Calcif Tissue Res 13:73–82

    Article  PubMed  CAS  Google Scholar 

  5. Nelson DGA, Williamson BE (1982) Low-temperature laser Raman spectroscopy of synthetic carbonated apaties and dental enamel. Aust J Chem 35:715–727

    Article  CAS  Google Scholar 

  6. Vignoles M, Bonel G, Holcomb DW, Young RA (1988) Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions. Calcif Tissue Int 43:33–40

    Article  PubMed  CAS  Google Scholar 

  7. Trombe JC, Bonel G, Montel G (1969) Etude par spectrométrie d'absorption infrarouge de l'ion carbonate dans quelques apatites préparées à haute température. CR Acad Sci Paris 268:941–944

    Google Scholar 

  8. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164

    Article  PubMed  CAS  Google Scholar 

  9. Roux P, Bonel G (1980) Evolution structurale sous haute pression des apatites carbonatées de type B. Ann Chim Fr 5:397–405

    CAS  Google Scholar 

  10. Baxter JD, Biltz RM, Pellegrino ED (1966) The physical state of bone carbonate: a comparative infrared study in several mineralized tissues. Yale J Biol Med 3:456–470

    Google Scholar 

  11. LeGeros RZ (1967) Crystallography studies of the carbonate substitution in the apatite structure. PhD thesis, New York University. New York

    Google Scholar 

  12. Marraha M (1989) Synthèse et étude physico-chimique des phospho-sulfates de calcium de structure β Ca3(PO4)2. Thèse d'Etat, INP, Toulouse

    Google Scholar 

  13. Charlot G (1966) Les méthodes de la chimie analytique, analyse quantitative et minérale, 5ème ed. Masson, Paris

    Google Scholar 

  14. Pinta M (1971) Spectrométrie d'absorption atomique, t. 1 et 2, Masson, Paris

    Google Scholar 

  15. Edmond CR (1969) Direct determination of fluoride in phosphate rock samples using the specific ion electrod. Anal Chem 41:1327–1328

    Article  Google Scholar 

  16. Hannah RN, Swinehart JS (1974) Experiments in techniques of infrared spectroscopy. Perkin-Elmer Norwalk, Conn

    Google Scholar 

  17. Kaupinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. App Spect 35:271–276

    Article  Google Scholar 

  18. Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules. D Van Nostrand Co, London, p 298

    Google Scholar 

  19. Flowler BO (1974) Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatite utilizing isotopic substitution. Inorg Chem 13:194–207

    Article  Google Scholar 

  20. Gree A, Dietz VR (1955) Pyrophosphate formation upon ignition of precipitated basic calcium phosphate. J Am Chem Soc 77:2961–2965

    Article  Google Scholar 

  21. Bonel G, Labarthe JC, Vignoles C (1973) Contribution à l'étude structurale des apatites carbonatées de type B. Colloque International CNRS (Paris) Physico-Chimie et Cristallographie des apatites d'intérêt biologique 230:117–125

    Google Scholar 

  22. Beshah K, Rey C, Glimcher MJ, Shimizu M, Griffin RG (1990) Carbon-13 and proton solid-state NMR studies of carbonate-containing calcium phosphates and enamel. J Solid State Chem 84:71–81

    Article  CAS  Google Scholar 

  23. McConnel D (1952) The problem of the carbonate apatites. IV. Structural substitutions involving CO3 and OH. Bull Soc Fr Miner Crystallog 75:428–445

    Google Scholar 

  24. Trombe JC (1972) Contribution à l'étude de la décomposition et de la réactivité de certaines apatites hydroxylées carbonatées ou fluorées alcalino-terreuses. Thèse d'Etat Université Paul Sabatier, Toulouse

    Google Scholar 

  25. Holcomb DW, Young RA (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31:189–201

    Article  PubMed  CAS  Google Scholar 

  26. Vignoles-Montrejaud M (1984) Contribution á l'étude des apatites carbonatées de type B. Thèse d'Etat, INP, Toulouse

    Google Scholar 

  27. ElFeki H, Jemal M (1989) Methode gravimetrique de dosage des carbonates dans les apatites. Analusis 17, 8:460–463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Feki, H., Rey, C. & Vignoles, M. Carbonate ions in apatites: Infrared investigations in thev 4 CO3 domain. Calcif Tissue Int 49, 269–274 (1991). https://doi.org/10.1007/BF02556216

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556216

Key words

Navigation