Denosumab, cortical bone and bone erosions in rheumatoid arthritis

Takeuchi et al. demonstrate an additional inhibitory effect on the progression of bone erosions in rheumatoid arthritis (RA) with the addition of methotrexate of an anti-receptor activator of nuclear factor kappa-B ligand (RANKL) antibody, denosumab, confirming results already reported 8 years ago by Cohen and colleagues. Insufficient inhibition of structural joint damage by disease-modifying antirheumatic drugs (DMARDs) was reported despite clinical improvement, and recently two meta-analyses showed that methotrexate combined with biologics is statistically superior to methotrexate in inhibiting radiographic progression, but the estimated mean change with all treatments was less than the minimal clinically important difference.

On the other side, from the bone point of view, we previously observed that low bone mineral density (BMD) at the cortical site was significantly associated with the presence of bone erosions, and recently Zhu and colleagues reported alterations in the density and microstructure of the cortical bone of patients with RA, providing new insight into the microstructural basis of bone involvement in RA. In particular, in patients with antici-

Denosumab is a well-known, effective agent for increasing BMD, both at trabecular and cortical sites, and has been shown to prevent metacarpal bone loss in patients with RA, and improve cortical porosity. An intriguing hypothesis is that the effects of denosumab in terms of prevention of bone erosions are mainly due to its positive effects on cortical BMD and porosity.

We think that, in the future, treatment with agents not only targeting inflammation but improving cortical bone should deserve more consideration in order to achieve better prevention of bone erosions in RA. Non-responders to the DMARDs in terms of progression of bone erosions could be indeed the consequences of a concomitant osteoporosis. The lack of data about BMD might represent an important bias for meta-analysis on effects of DMARDs on radiographic progression of RA.


Maurizio Rossini, Giovanni Adami, Ombretta Viapiana, Luca Idolazzi, Davide Gatti
Rheumatology Section, Department of Medicine, University of Verona, Verona, Italy

Correspondence to Professor Maurizio Rossini, Rheumatology Unit, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, Verona 37134, Italy; maurizio.rossini@univr.it

Competing interests None declared.

Provenance and peer review Not commissioned; internally peer reviewed.


REFERENCES
Denosumab, cortical bone and bone erosions in rheumatoid arthritis

Maurizio Rossini, Giovanni Adami, Ombretta Viapiana, Luca Idolazzi and Davide Gatti

*Ann Rheum Dis* published online June 23, 2016

Updated information and services can be found at: [http://ard.bmj.com/content/early/2016/06/23/annrheumdis-2016-210022](http://ard.bmj.com/content/early/2016/06/23/annrheumdis-2016-210022)

**References**

These include:

This article cites 13 articles, 5 of which you can access for free at: [http://ard.bmj.com/content/early/2016/06/23/annrheumdis-2016-210022#BIBL](http://ard.bmj.com/content/early/2016/06/23/annrheumdis-2016-210022#BIBL)

**Email alerting service**

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Notes**

To request permissions go to: [http://group.bmj.com/group/rights-licensing/permissions](http://group.bmj.com/group/rights-licensing/permissions)

To order reprints go to: [http://journals.bmj.com/cgi/reprintform](http://journals.bmj.com/cgi/reprintform)

To subscribe to BMJ go to: [http://group.bmj.com/subscribe/](http://group.bmj.com/subscribe/)