Deletion of \textit{LCE3C} and \textit{LCE3B} Genes at PSORS4 Does Not Contribute to Susceptibility to Psoriatic Arthritis in German Patients

Ulrike Hüffmeier ¹, Xavier Estivill ²,³, Eva Riveira-Munoz ², Heiko Traupe ⁴, Jörg Wendler ⁵, Jörg Lohmann ⁶, Beate Böhm ⁷, Harald Burkhardt ⁷, André Reis ¹

¹ Institute of Human Genetics, University Hospital Erlangen, University Erlangen-Nuremberg, Germany, 2 Centre for Genomic Regulation (CRG) and Public Health and Epidemiology Network Biomedical Research Center (CIBERESP), Barcelona, Spain, 3 Pompeu Fabra University (UPF), Barcelona, Spain, 4 Department of Dermatology, University of Münster, Germany, 5 Rheumatologische Schwerpunktpрактим, Erlangen, Germany, 6 Psoriasis rehabilitation hospital, Bad Bentheim, Germany, 7 Division of Rheumatology, Department of Internal Medicine II, Johann Wolfgang Goethe University, Frankfurt am Main, Germany

Corresponding Author:
Prof. Dr. med. A. Reis, Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany, email: reis@humgenet.uni-erlangen.de

Short Title: Deletion of \textit{LCE3C} and \textit{LCE3B} genes and Psoriatic Arthritis

Key Words: Psoriatic arthritis, genetic association, copy number polymorphism, skin-specific risk factor

Abbreviations: CNV copy number variation
EDC epidermal differentiation complex
LD linkage disequilibrium
PsA psoriatic arthritis
PSORS PSORiasis Susceptibility Locus
PsV psoriasis vulgaris

Abstract
INTRODUCTION: PSORS4 is a susceptibility locus for psoriasis vulgaris (PsV), a common inflammatory, hyperproliferative skin disorder. Recently, a deletion of two late cornified envelope (LCE) genes within epidermal differentiation complex on chromosome 1 was shown to be enriched in 1,426 PsV patients, suggesting compromised barrier function in deletion carriers. We subsequently confirmed this genetic association in a German cohort.
METHODS: In order to investigate whether this variant also predisposes to psoriatic arthritis (PsA), we genotyped this deletion and three SNPs in strong linkage disequilibrium with it in a case-control cohort of 650 patients and 937 control individuals of German origin.
RESULTS: \textit{LCE} deletion frequency did not significantly differ between PsA patients and controls (65.0\% vs. 65.5\%). Similarly, no evidence for association to the three SNPs was observed.
DISCUSSION: This is the first non-HLA risk factor predisposing only to skin-type of psoriasis supporting the concept of partially overlapping, but different etiological factors underlying skin and joint manifestations.
Introduction
Psoriasis vulgaris (PsV) is a common inflammatory skin disorder characterized by epidermal hyperproliferation, altered keratinocyte differentiation and immunological processes e.g. invasion of granulocytes and of T-cells in affected skin. About 30% of patients[1] develop an inflammatory joint disease, designated as psoriatic arthritis (PsA). Although the relative recurrence risk for relatives of PsA patients is 3.5-13 times higher as compared to those of PsV patients,[2-6] indicating an even stronger genetic impact in PsA, most genetic risk factors identified for psoriasis so far - e.g. variants in the IL-23R pathway[7] and variants in the genes NAT9, SLC9A3R1 and RAPTOR at psoriasis susceptibility locus 2 (PSORS2) on chromosome 17q25[8] - do not account for the differences e.g. in sibling recurrence risk or explain the different organ manifestations. It is of note, though, that frequency differences in the HLA-C risk allele have been observed between patients with PsV and PsA.[9-13]
PSORS4 was identified in a genome wide linkage analysis,[14] and this locus is of special interest for PsV, since it comprises the epidermal differentiation complex (EDC), a group of genes expressed in the upper strata of the epidermis. While several genes at PSORS4 – e.g. LOR, LCE1C, PGLYRP, SPRR, PRR9 genes and IVL – have been proposed to account for psoriasis susceptibility,[15-18] very recently, a copy number variation (CNV) within the LCE gene cluster was identified by a genome-wide scan using pooled DNAs. The deletion of two late cornified envelope genes (= LCE; LCE3C and LCE3B) was shown to be enriched in 1,426 psoriasis patients and to be associated in a large family-based cohort.[19] Results of the same study suggested that carriers of the deletion have a compromised repair response following barrier disruption in the skin.[19]
Now we were interested, whether the LCE deletion contributes to susceptibility to PsA, as well.

Methods
We analyzed a large case control study comprising 650 PsA patients, a subset of the 748 patients previously described.[7] For this subset high quality DNA from Qiagen column purification was available. All 650 patients fulfilled the recently defined classification for psoriatic arthritis (CASPAR) and were recruited by board certified rheumatologists. In comparison to the previously described, larger cohort[7] clinical characteristics were very similar: the mean (standard deviation) age of onset for PsV was 28.2±13.0 years; 61.9% of the patients were male. For 78% of the patients, the diagnosis of PsA was made >/= 3 years before recruitment and 96% of patients had a skin involvement >/= 3 years before recruitment. Peripheral joint involvement was detectable in the majority of cases (619, or 95.2%); this was oligoarticular in 141 patients and polyarticular in 474 (21.7 and 72.9% of the entire cohort, respectively). Diagnosis of spinal involvement was based on symptoms of inflammatory back pain, characteristic clinical signs of restricted vertebral movement and/or sacroiliac pain upon physical examination, and a subsequent confirmation by radiographic signs of either sacroiliitis and/or spondylitis. Spinal involvement was observed in 132 patients, accounting for 20.3% of the PsA cohort. In these patients, sacroiliits or spondylitis or both were partly associated with concomitant peripheral joint disease. The 937 control individuals were the same as previously reported.[7]
We genotyped the CNV with a modified protocol from that used by Cid et al.[19] a multiplex assay of two fluorescently marked PCR products detected on an ABI3730 DNA sequencer (Applied Biosystems, Foster City, USA). Briefly, we amplified a breakpoint-spanning PCR-product of 351 bp (F: GGATACTAAGAAGTTCTCAC, R: GTGGTGAGAGAGGGCATCTC) for deletion alleles and a second amplicon for wildtype alleles (primers within the deleted region, product size of 561 bp (F: CATTAGCCTGGAGCTTTTGC, R: ACAAGTGATAACATTGTCAGGAGG)) using
Amplitaq Gold polymerase (Applied Biosystems, Foster City, USA) and 40 ng DNA. The multiplex reaction was diluted 1:20; 5 µl were analysed with size standard LIZ600 (Applied Biosystems, Foster City, USA) on the capillary sequencer. Genotypes passing quality control showed peak intensities >2000 fluorescent units, and in putative heterozygote individuals, ratios of \(LCE3C-LCE3B \)-del allele to non-deletion allele peak heights were >0.5 and <3. To estimate the error-rate of genotyping, we performed duplicate genotyping of six 96-well-microtitre plates. 515 DNAs yielded amplification in both runs and were used to compare genotypes. Within these, 449 (87.2%) passed both quality criteria (see above) and were concordant in both experiments. 7 DNAs (1.4%) passed quality control in both runs, but showed divergent genotypes. We therefore have to assume a genotyping error rate of about 1.4%. Since it is not known whether the genetic risk factor is the deletion or a variant in strong linkage disequilibrium (LD), we also genotyped three SNPs (rs10888502, rs4112788, rs4845456) in the same LD block. SNPs were genotyped with TaqMan assays (Applied Biosystems, Foster City, USA). In addition, 72 randomly selected genotypes were verified by DNA sequencing single individuals as previously described.[7]

Results and Discussion

For all variants, Hardy-Weinberg-equilibrium was fulfilled in both groups of patients and control individuals. Genotyping rates of \(LCE3C-LCE3B \)-del, rs10888502, rs4112788 and rs4845456 were between 94.1% and 96.4%. Almost all variants were in perfect LD with each other, except for LD between the CNV and rs10888502. We observed similar allele frequencies for all variants in patients and control individuals; differences were not significant as determined by chi-square statistics (Table 1). Similar results were obtained for haplotypes that were calculated with Haploview[20] (data not shown).

Table 1: Allele frequencies [absolute number (percentage)] of the four variants in PsA patients and control probands and results of \(\chi^2 \)-statistics (n. s. = not significant). * indicates the associated allele from Cid et al.[19]

<table>
<thead>
<tr>
<th>Variant</th>
<th>Allele</th>
<th>Controls</th>
<th>PsA</th>
<th>(\chi^2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNV</td>
<td>(LCE3C-LCE3B)-del*</td>
<td>1159 (65.5)</td>
<td>825 (65.0)</td>
<td>0.088</td>
<td>n. s.</td>
</tr>
<tr>
<td></td>
<td>non-deletion</td>
<td>611 (34.5)</td>
<td>445 (35.0)</td>
<td>1.902</td>
<td>n. s.</td>
</tr>
<tr>
<td>rs10888502</td>
<td>G*</td>
<td>685 (38.6)</td>
<td>427 (36.1)</td>
<td>0.138</td>
<td>n. s.</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1091 (61.4)</td>
<td>757 (63.9)</td>
<td>0.614</td>
<td>n. s.</td>
</tr>
<tr>
<td>rs4112788</td>
<td>A*</td>
<td>627 (35.3)</td>
<td>439 (35.9)</td>
<td>0.160</td>
<td>n. s.</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>1151 (64.7)</td>
<td>783 (64.1)</td>
<td>0.614</td>
<td>n. s.</td>
</tr>
<tr>
<td>rs4845456</td>
<td>A*</td>
<td>675 (37.7)</td>
<td>449 (36.3)</td>
<td>0.034</td>
<td>n. s.</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>1117 (62.3)</td>
<td>789 (63.7)</td>
<td>0.614</td>
<td>n. s.</td>
</tr>
</tbody>
</table>

A power analysis revealed that, we have 95% power to detect a risk factor with an allele frequency of 68-72% and an OR of 1.37-1.38 in our case control cohort under the assumption of a logarithmic-additive model and with a type I error rate of 5% (calculated with Quanto).[21] Considering that initial studies often overestimate effects of risk factors, we determined that we had power of 80% of detecting an association even for an OR of 1.22-1.23 under the assumption of an identical allele frequency range.

The lack of association is most probably not due to the geographical origin of the patients, as we identified highly significant association to the deletion in an independent study of PsV patients without joint manifestation retrieved from the same population (Germany) [Hüffmeier et al., in preparation] similar in magnitude to that recently reported.[19] Likewise we did not observe evidence for association in the subset of 502 PsA patients with
manifestation ≤ 40 years of age (type I psoriasis) and average age of onset in the subset was comparable to the one of the above mentioned PsV cohort ((24.0±9.5 and 23.2±11.9, respectively). Finally, no evidence for association was observed in subgroups of carriers or non-carriers of the PSORS1 risk allele.

Given the almost identical allele frequencies between both groups, it is highly unlikely, that the genotyping error determined can account for the lack of association. Our results suggest that the *LCE3C-LCE3B-del*, primarily identified in patients with skin-type psoriasis, does not predispose to joint manifestation at least in German patients. Therefore this susceptibility factor is more specific to the skin manifestation than most of the risk factors for psoriasis identified, to date. Accordingly, our finding is also experimental support for the concept that besides common genetic factors, also clearly distinct ones contribute to the etiology of distinguishable clinical manifestations such as psoriasis of skin and joints.

Acknowledgements

We are grateful to all patients and control probands for participation in this study. We acknowledge Anne M. Bowcock (Human Genetics, Washington University School of Medicine) for helpful discussions. We thank Petra Badorf and Claudia Danzer for excellent technical assistance. The work was supported in part by a grant from the Interdisciplinary Centre for Clinical Research (IZKF B32/A8) of the University of Erlangen-Nuremberg. Research of the laboratory of X.E. is supported by the Spanish Ministry of Science and Innovation (SAF2008-00357) and by the “Generalitat de Catalunya”.

The authors do not have any competing interests. The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://ard.bmj.com/ifora/licence.pdf).
References
Deletion of LCE3C and LCE3B genes at PSORS4 does not contribute to Susceptibility to Psoriatic Arthritis in German patients

Ulrike Hüffmeier, Xavier Estivill, Eva Riveira-Munoz, Heiko Traupe, Jörg Wendler, Jörg Lohmann, Beate Böhm, Harald Burkhardt and André Reis

Ann Rheum Dis published online May 12, 2009

Updated information and services can be found at:
http://ard.bmj.com/content/early/2009/05/12/ard.2009.108951

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

An erratum has been published regarding this article. Please see next page or:
/content/71/10/1756.2.full.pdf

Articles on similar topics can be found in the following collections
- Open access (595)
- Degenerative joint disease (4641)
- Musculoskeletal syndromes (4951)
- Genetics (968)
- Immunology (including allergy) (5144)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
Hüffmeier U, Estivill X, Riveira-Munoz E, et al. Deletion of LCE3C and LCE3B genes at PSORS4 does not contribute to susceptibility to psoriatic arthritis in German patients. *Ann Rheum Dis* 2010;69:876-878. This was published in the print issue with the incorrect doi 10.1136/ard.2009.108951. The correct doi is 10.1136/ard.2010.108951 because this is the doi it was originally published with online first.