Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: the FAST4WARD study

Roy Fleischmann, Jiri Vencovsky, Ronald F van Vollenhoven, David Borenstein, Jane Box, Geoffroy Coteur, Niti Goel, Hans-Peter Brezinschek, Alison Innes, Vibeke Strand

Corresponding author:
Roy Fleischmann, MD
University of Texas Southwestern Medical Center
5939 Harry Hines Blvd.
Dallas
TX 75235
USA
rfleischmann@arthdocs.com

Co-Authors; affiliations
Jiri Vencovsky, Institute of Rheumatology, Prague, Czech Republic
Ronald F van Vollenhoven, Karolinska Institute, Stockholm, Sweden
David Borenstein, George Washington University Medical Center, Washington, DC, USA
Jane Box, Carolina Bone and Joint, Charlotte, North Carolina, USA
Geoffroy Coteur, UCB, Braine l’Alleud, Belgium
Niti Goel, UCB, Inc, Atlanta, Georgia, USA
Hans-Peter Brezinschek, Medical University Graz, Graz, Austria
Alison Innes, UCB, Slough, United Kingdom
Vibeke Strand, Stanford University, Stanford, California, USA

Keywords: certolizumab pegol, rheumatoid arthritis, monotherapy, TNF

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ publishing group Ltd to permit this article (if accepted) to be published in ARD and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence (http://ARD.bmjournals.com/ifora/licence.pdf)
ABSTRACT

Background: Tumour necrosis factor alpha (TNFα) is a proinflammatory cytokine involved in the pathogenesis of rheumatoid arthritis (RA). Treatment with TNFα inhibitors reduces disease activity and improves outcomes for RA patients. This study evaluated the efficacy and safety of certolizumab pegol 400 mg, a novel, PEGylated, Fc-free TNFα inhibitor, as monotherapy in patients with active RA.

Methods: In this 24-week, multicentre, randomised, double-blind, placebo-controlled study, 220 patients previously failing ≥1 DMARDs were randomised 1:1 to receive subcutaneous certolizumab pegol 400 mg (n = 111) or placebo (n = 109) every 4 weeks (q4w). The primary endpoint was ACR20 response at week 24. Secondary endpoints included ACR50/70 response, ACR component scores, (DAS28[ESR]-3), patient-reported outcomes (including physical function, HRQoL, pain and fatigue) and safety.

Results: At week 24, the ACR20 response rates were 45.5% for certolizumab pegol 400 mg q4w vs 9.3% for placebo (p<0.001). Differences for certolizumab pegol vs placebo in the ACR20 response were statistically significant as early as week 1 through to week 24 (p<0.001). Significant improvements in ACR50, ACR components, DAS28(ESR)-3 and all patient-reported outcomes were also observed early with certolizumab pegol and were sustained throughout the study. Most adverse events were mild or moderate and no deaths or cases of tuberculosis were reported.

Conclusions: Treatment with certolizumab pegol 400 mg monotherapy every 4 weeks effectively reduced the signs and symptoms of active RA in patients previously failing ≥1 DMARDs compared with placebo, and demonstrated an acceptable safety profile (ClinicalTrials.gov identifier: NCT00548834).
INTRODUCTION

Tumour necrosis factor alpha (TNFα) inhibitors represent a major advance in rheumatoid arthritis (RA) treatment and are the first choice in biologic therapy for patients following an inadequate response to non-biologic disease-modifying anti-rheumatic drugs (DMARDs).1-5 Although all current TNFα inhibitors have demonstrated similar efficacy in RA clinical trials, individual patient responses to any one or all of these agents vary in clinical practice. Some patients also stop responding to these agents over time or discontinue treatment due to tolerability issues.6 7

Certolizumab pegol is the first PEGylated, Fc-free anti-TNFα. Attachment of a polyethylene glycol (PEG) chain to the Fab′ fragment increases its half-life to a mean of 14 days.8 The lack of an Fc portion may avoid potential Fc-mediated effects such as complement- or antibody-dependent cell-mediated cytotoxicity as seen in vitro.8 In two studies, certolizumab pegol 200 mg administered every 2 weeks with concomitant methotrexate (MTX) significantly reduced the clinical signs and symptoms of RA, inhibited the progression of structural damage and improved physical function. Improvements in clinical efficacy and inhibition of structural damage were statistically significant at Week 52 and were observed as early as weeks 1 and 16, respectively.9 10

Despite evidence of additional efficacy when TNFα inhibitors are combined with MTX, some patients cannot tolerate MTX or have a contraindication to it.11 12 Anti-TNFα monotherapy has been shown to be effective in the treatment of RA.2 13 14 Here we present results from the FAST4WARD (EFficAcy and Safety of CerTolizumab Pegol – 4 Weekly dosAge in RheumatoiD Arthritis) study, which examined the efficacy (signs and symptoms and patient-reported outcomes) and safety of certolizumab pegol 400 mg monotherapy, administered subcutaneously (SC) every 4 weeks (q4w), versus placebo in patients with RA who had failed at least one prior DMARD.
METHODS

Patients

Eligible patients, aged 18–75 years, had adult-onset RA, defined by the 1987 American College of Rheumatology (ACR) criteria15,16 of ≥6 months' duration, and had failed ≥1 prior DMARD due to lack of efficacy or intolerance. Subjects had to have active disease at screening and baseline, defined by ≥9 (out of 68) tender joints and ≥9 (out of 66) swollen joints and ≥1 of the following: ≥45 minutes of morning stiffness, erythrocyte sedimentation rate (ESR) (Westergren) ≥28 mm/h, or C-reactive protein (CRP) >10 mg/l. DMARDs were discontinued for ≥28 days or 5 half-lives of the drug, whichever was longer, prior to administration of the first study dose, except for leflunomide, which was eliminated using cholestyramine administration followed by a further 28-day washout.

Patients were excluded if they had any inflammatory arthritis other than RA or a history of chronic, serious or life-threatening infection, any current infection, a history of or a chest x-ray suggesting tuberculosis or a positive (defined by local practice) purified protein derivative (PPD) skin test. PPD-positive patients who had received the Bacille Calmette-Guérin vaccination and had a chest x-ray suggesting no tuberculosis and no clinical symptoms could be enrolled.

Patients who had received biologic therapies for RA within 6 months, or prior treatment with TNFα inhibitors, were excluded. Concurrent oral corticosteroids (prednisone equivalent ≤10 mg/day, stable for ≥4 weeks prior to enrolment and during the study), non-steroidal anti-inflammatory drugs and analgesics were allowed. Intra-articular, peri-articular, intramuscular and intravenous corticosteroids were prohibited.

Study design

FAST4WARD was a 24-week, randomised, double-blind, placebo-controlled study conducted at 36 sites in Austria, Czech Republic and the United States (June 2003-2004). Institutional review boards or ethics committees approved the protocol at each centre. All patients gave written consent, and the study was conducted in accordance with the Declaration of Helsinki.

Patients were randomised 1:1 using an interactive voice randomisation service to lyophilised SC certolizumab pegol 400 mg or placebo (sorbitol solution) q4w from baseline to week 20. Solutions of active drug or placebo were prepared by the pharmacist or other unblinded, qualified site personnel, before distributing to blinded study personnel for administration. Patients who completed the study or withdrew on/after week 12 were eligible and encouraged to enter an open-label study of certolizumab pegol 400 mg q4w (unless withdrawn due to non-compliance or possible treatment-related adverse events). Patients who withdrew after taking ≥1 study dose were asked to return for an early withdrawal visit.

Efficacy/safety evaluations

Efficacy and safety were assessed at baseline and weeks 1, 2, 4, 8, 12, 16, 20 and 24, with additional safety assessments at 4 and 12 weeks post–final dose. Additional plasma samples were taken at weeks 21 and 22.

The primary efficacy endpoint was ACR20 response at week 24.16 Secondary endpoints included ACR50/70 response, ACR component scores, Disease Activity Score (DAS)–erythrocyte sedimentation rate (ESR)-3, patient-reported outcomes (including physical function [Health Assessment Questionnaire–Disability Index (HAQ-DI)17], health-related quality of life [HRQoL; Short Form-36 item questionnaire (SF-36)18,19], pain [100-mm visual analogue scale (VAS) and modified Brief Pain Inventory (mBPI)] and fatigue [11-point Fatigue Assessment Scale (FAS)20]) and safety.
Post-hoc analyses included determination of the proportion of subjects achieving minimal clinically important differences (MCID) in the following at week 24: HAQ-DI (≥0.22 point decrease from baseline), 21 arthritis pain (≥10 point decrease), 22 SF-36 domain (≥5 point increase in individual domains), Physical and Mental Component Summary (PCS and MCS) scores (≥2.5 point increase) 18 19 and FAS (≥1 point decrease). 23

Safety was assessed by recording all reported adverse events (AEs) at each visit. Treatment-emergent AEs were defined as occurring after the first administration of study drug and up to 12 weeks post–final dose. Serious AEs (SAEs) and serious infections were also calculated (post-hoc) as the number of new cases per 100 patient-years (censored at the time of the first event by preferred term). Laboratory assessments, vital signs, physical examination and auto-antibody levels were monitored according to pre-defined assessment schedules. Plasma concentrations of anti–certolizumab pegol antibodies for all patient samples were measured at a central laboratory (Covance, Chantilly Virginia, USA) by an enzyme-linked immunosorbent assay at each safety assessment; samples were considered positive if the level was >2.4 units/ml (lower and upper limits of quantitation were 0.412 and 33.3 µg/ml). Antibody-positive patients were assessed for neutralizing antibodies in a cell-based bioassay (Alta Analytical, San Diego, California, USA).

Statistical analyses

The sample size was based on the expected percent of ACR20 responders; 25% of placebo-treated patients and 50% of certolizumab pegol–treated patients were expected to achieve an ACR20 response at week 24. A sample size of 100 patients per treatment group was estimated to have ≥90% power to detect a treatment difference of 25% in the ACR20 response rate between the treatment groups at a 5%, 2-sided significance level.

All efficacy analyses were performed on the modified intent-to-treat (mITT) population (all randomised patients who had taken ≥1 dose of study medication). The actual number of subjects in the summaries varies slightly from the mITT numbers due to non-imputable missing data for each parameter. For the primary analysis, patients were considered ‘responders’ if they achieved an ACR20 response versus baseline at week 24. Patients who withdrew for any reason were considered non-responders. The proportion of ACR20 responders/non-responders at each visit was compared using the Cochran-Mantel-Haenszel (CMH) test stratified by country. Several sensitivity analyses of the primary efficacy variable were conducted, including last observation carried forward (LOCF) analysis. Analyses of ACR50 and ACR70 responders were carried out in the same way. Changes from baseline in categorical variables were analysed using the CMH method stratified by country. Actual values and change from baseline at each visit were summarised for continuous variables. Differences in continuous variables between treatment groups were compared using analysis of co-variance (ANCOVA), with country and treatment group as factors and baseline score as a co-variate. Missing efficacy measurements were imputed using LOCF where available.

As part of the post-hoc analyses, the proportions of patients reporting improvements ≥MCID in patient-reported outcome measures (HAQ-DI, pain VAS, SF-36 and FAS) were compared between treatment groups at each visit using a logistic regression model with treatment as factor and baseline score, age and gender as co-variates. The between-group differences in the number of withdrawals due to lack of efficacy were tested using a CMH test stratified by country.

Safety was analysed in the safety population (all randomised patients who received ≥1 dose of study drug). Analysis of AEs included summaries per the Medical
Dictionary for Regulatory Activities (version 5.1) coding terms for system organ class, higher level and preferred terms; intensity and relationship to study medication; and by classification as serious or non-serious. AEs leading to death and withdrawal were also assessed.
RESULTS

Patients

Two-hundred and twenty patients with active RA were randomised to certolizumab pegol 400 mg (n = 111) or placebo (n = 109), with 76 (68.5%) and 28 (25.7%) patients in each group, respectively, completing treatment at week 24 (fig 1). Significantly fewer certolizumab pegol–treated (21.6%) versus placebo-treated (68.8%) patients withdrew due to lack of efficacy (p<0.001). Patient baseline demographics and disease activity were similar between treatment arms (Table 1).
Table 1 Baseline patient demographics and disease activity (mITT population)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Placebo (n = 109)</th>
<th>Certolizumab pegol 400 mg (n = 111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>54.9 (11.6)</td>
<td>52.7 (12.7)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>97 (89.0)</td>
<td>87 (78.4)</td>
</tr>
<tr>
<td>RF-positive (<14 IU/ml), n (%)</td>
<td>109 (100.0)</td>
<td>110 (100.0)</td>
</tr>
<tr>
<td>Disease duration (years), mean (SD)</td>
<td>10.4 (9.6)</td>
<td>8.7 (8.2)</td>
</tr>
<tr>
<td>No of prior DMARDs, mean (SD)</td>
<td>2 (1.25)</td>
<td>2 (1.19)</td>
</tr>
<tr>
<td>Prior MTX use, n (%)</td>
<td>109 (100.0)</td>
<td>110 (100.0)</td>
</tr>
<tr>
<td>Concurrent use of oral corticosteroids (prednisone equivalent ≤10 mg/day), n (%)</td>
<td>64 (58.7)</td>
<td>62 (55.9)</td>
</tr>
<tr>
<td>Tender joint count, mean (SD)</td>
<td>28.3 (12.5)</td>
<td>29.6 (13.7)</td>
</tr>
<tr>
<td>Swollen joint count, mean (SD)</td>
<td>19.9 (9.3)</td>
<td>21.2 (10.1)</td>
</tr>
<tr>
<td>Patient’s Global Assessment of Arthritis, mean (SD)</td>
<td>3.3 (0.77)</td>
<td>3.3 (0.75)</td>
</tr>
<tr>
<td>Physician’s Global Assessment of Arthritis, mean (SD)</td>
<td>3.6 (0.62)</td>
<td>3.6 (0.67)</td>
</tr>
<tr>
<td>Patient’s Assessment of Arthritis Pain (VAS), mean (SD)</td>
<td>54.8 (20.8)</td>
<td>58.2 (21.9)</td>
</tr>
<tr>
<td>HAQ-DI, mean (SD)</td>
<td>1.6 (0.65)</td>
<td>1.4 (0.63)</td>
</tr>
<tr>
<td>DAS28(ESR)-3, mean (SD)</td>
<td>6.3 (0.9)</td>
<td>6.3 (1.1)</td>
</tr>
<tr>
<td>CRP (mg/l), geometric mean (95% CI)</td>
<td>11.3 (8.6–14.9)</td>
<td>11.6 (9.1–14.8)</td>
</tr>
<tr>
<td>ESR (mm/h), geometric mean (95% CI)</td>
<td>35.6 (30.8–41.0)</td>
<td>30.9 (25.9–36.8)</td>
</tr>
</tbody>
</table>

mITT, modified intent to treat; DMARD, disease-modifying anti-rheumatic drug; VAS, visual analogue scale; HAQ-DI, Health Assessment Questionnaire–Disability Index; CRP, C-reactive protein; DAS28(ESR)-3, disease activity score–erythrocyte sedimentation rate-3. Patient’s and Physician’s Global Assessment of Arthritis were scored on a categorical scale of 1–5 where 1=very good (asymptomatic and no limitation of normal activities) and 5=very poor (very severe symptoms which are intolerable and inability to carry out all normal activities).
Although RF positivity was not an inclusion criteria for the present study, 100% of enrolled patients were RF positive using a threshold value of ≥ 14 IU/ml for positivity. A significant number of patients had RF values between 14 and 15 IU/mL, and if a threshold of 15 IU/ml had been used, 76.1% and 75.5% of placebo- and certolizumab-treated patients would have been considered RF positive, respectively.

Efficacy

Primary endpoint

At week 24, using non-responder imputation, certolizumab pegol 400 mg q4w demonstrated a significantly superior ACR20 response versus placebo ($p<0.001$; 45.5% vs 9.3%) (Figure 2A). Sensitivity analyses of the primary efficacy variable demonstrated ACR20 response rates of 49.1% and 13.9% at week 24, respectively ($p<0.001$).

Secondary endpoints

ACR50 and ACR70: At week 24, using nonresponder imputation, ACR50 and ACR70 responses were significantly superior for certolizumab pegol versus placebo (22.7% vs 3.7%; $p<0.001$; and 5.5% vs 0%, $p\leq 0.05$, respectively) (Figure 2A).

ACR components: Certolizumab pegol-treated patients experienced statistically significant improvements in all ACR components at week 24 versus placebo ($p\leq 0.05$) (Table 2, Figure 3).
Table 2 Improvement in ACR components and disease activity at weeks 1 and 24: LS mean change from baseline (mITT population)

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo (n = 109)</td>
<td>Placebo (n = 109)</td>
</tr>
<tr>
<td></td>
<td>CZP 400 mg (n = 111)</td>
<td>CZP 400 mg (n = 111)</td>
</tr>
<tr>
<td></td>
<td>p Value</td>
<td>p Value</td>
</tr>
<tr>
<td>ACR core component scores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swollen joint count*</td>
<td>-2.8</td>
<td>-6.0</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Tender joint count†</td>
<td>-4.6</td>
<td>-9.8</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Patient’s Global Assessment of Arthritis‡</td>
<td>-0.1</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physician’s Global Assessment of Arthritis‡</td>
<td>-0.1</td>
<td>-0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient’s Assessment of Arthritis Pain (VAS)§</td>
<td>-5.2</td>
<td>-16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAQ-DI¶</td>
<td>0.04</td>
<td>-0.23</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Disease activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP (mg/l)¹</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>ESR (mm/h)¹</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

CZP, certolizumab pegol; VAS, visual analogue scale; HAQ-DI, Health Assessment Questionnaire–Disability Index; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate.

From analysis of co-variance model with treatment and country as factors and baseline value as covariate. This table is based on the last observation carried forward approach.

*Scale ranged from 0 to 66, with negative change indicating improvement.
†Scale ranged from 0 to 68, with negative change indicating improvement.
‡Scale ranged from 1 to 5, with negative change indicating improvement.
§Scale ranged from 0 to 100, with negative change indicating improvement; MCID = -10.
¶Scale ranged from 0 to 3, with negative change indicating improvement; MCID = -0.22.

Based on log-transformed data for CRP and ESR. The reported changes for CRP at week 24 correspond to an actual decrease from baseline of -5.2 mg/l for the certolizumab pegol arm and an increase of +2.2 mg/l for the placebo arm, respectively.
Disease activity
Least squares (LS) mean change from baseline in DAS28 was significantly superior for certolizumab pegol 400 mg versus placebo from week 1 and at all time points through to week 24 (−1.5 vs −0.6, respectively) (p<0.001).

Patient-reported outcomes

- **Physical function - HAQ-DI:** Significant and clinically meaningful improvements (LS mean change from baseline) in physical function were reported with certolizumab pegol versus placebo from week 1 (−0.23 vs 0.04, respectively) through week 24 (−0.36 vs 0.13, respectively) (Table 2 and Figure 3C; p<0.001). At week 24, 49% of certolizumab pegol–treated patients reported clinically meaningful improvements in physical function versus 12% for placebo (p<0.001).

- **Arthritis pain:** Significant and clinically meaningful reductions (LS mean change from baseline) in arthritis pain (VAS) scores were observed in the certolizumab pegol arm versus placebo by week 1 (−16.7 vs −5.2, respectively), and continued to improve throughout the study up to week 24 (−20.6 vs 1.7, respectively) (p<0.001; Table 2 and Figure 3D). At week 24, 47% of certolizumab pegol–treated patients reported clinically meaningful reductions in arthritis pain versus 17% for placebo (p<0.001). When measured by the mBPI scale, pain was significantly reduced versus placebo by day 2 (p≤0.05).

- **HRQoL:** Patients receiving certolizumab pegol reported statistically significant improvements in HRQoL at week 24 versus placebo, including all eight SF-36 domains and PCS and MCS scores (p<0.001) (Data not shown). At week 24, significantly more certolizumab pegol–treated patients reported HRQoL MCIDs (in all eight domains) versus placebo (p≤0.01) (data not shown). At week 24, 46% and 34% of certolizumab pegol–treated patients experienced PCS and MCS MCIDs, respectively, versus 16% and 7% for placebo (p<0.001).

- **Fatigue:** Statistically significant and clinically meaningful improvements in FAS scores were achieved throughout the 24-week study: LS mean change from baseline in FAS was −1.69 for certolizumab pegol versus −0.27 for placebo at week 24 (p<0.001). At week 24, 46% of certolizumab pegol–treated patients reported improvements in fatigue of ≥MCID versus 17% for placebo (p<0.001).

Kinetics of response
Rapid improvement with certolizumab pegol was observed in multiple measures, including ACR20 and ACR50 responses (LOCF imputation; Figure 2B), ACR core components (Table 2 and Figure 3), DAS28, SF-36 and FAS. At week 4 (i.e. after a single 400-mg dose), mean tender joint count was reduced from baseline by approximately 40% (from 29.6 to 17.7) with certolizumab pegol versus 14% with placebo (from 28.3 to 24.2); mean swollen joint count was reduced by approximately 38% (from 21.2 to 13.1) versus 16% (from 19.9 to 16.7), respectively (Figures 3A and 3B).

Safety
Treatment-emergent AEs occurred in 57.8% and 75.7% of patients in the placebo and certolizumab pegol groups, respectively (Table 3). The majority of AEs in both treatment groups were mild or moderate.
Table 3 Treatment-emergent adverse events (AEs), including serious adverse events (safety population)

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n = 109)</th>
<th>Certolizumab pegol 400 mg (n = 111)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Any AEs</td>
<td>63 (57.8%)</td>
<td>84 (75.7%)</td>
</tr>
<tr>
<td>Intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>43 (39.4%)</td>
<td>62 (55.9%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>40 (36.7%)</td>
<td>52 (46.8%)</td>
</tr>
<tr>
<td>Severe</td>
<td>11 (10.1%)</td>
<td>8 (7.2%)</td>
</tr>
<tr>
<td>Serious AEs Cases/100 pt-yrs*</td>
<td>3 (2.8%)</td>
<td>8 (7.2%)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Serious infections Cases/100 pt-yrs*</td>
<td>0 (0%)</td>
<td>2 (1.8%)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>AEs leading to death</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>AEs leading to withdrawal</td>
<td>2 (1.8%)</td>
<td>5 (4.5%)</td>
</tr>
</tbody>
</table>

*Number of new cases per 100 patient-years, calculated as the number of patients with the event under consideration divided by total exposure (censored at the time of the first event for those with an event under consideration).
AEs reported in ≥5% of patients in the certolizumab pegol groups were headache, nasopharyngitis, upper respiratory tract infections, diarrhoea and sinusitis. SAEs were reported in 3 (2.8%) patients in the placebo group (1 case [0.9%] each of vomiting, chronic renal failure and pneumonitis) and 8 (7.2%) patients in the certolizumab pegol group (2 [1.8%] cases of aggravated RA and 1 [0.9%] each of bacterial arthritis, mastitis, benign parathyroid tumour, postural dizziness, ischaemic stroke and menometrorrhagia) (9 vs 18 cases per 100 patient-years, respectively). No cases of tuberculosis or opportunistic infections were reported. The incidence of serious infections was 0% with placebo and 1.8% (2 cases) with certolizumab pegol (0 vs 4 cases per 100 patient-years, respectively); the 2 serious infections in the certolizumab pegol group were bacterial arthritis and mastitis.

There were no reported tumours in the placebo group and 2 (1.8%), both benign, with certolizumab pegol (1 case each of uterine fibroids and benign parathyroid tumour). No malignancies, including lymphoma, or cases of demyelinating disease were reported. AEs leading to withdrawal were reported in 2 (1.8%) placebo-treated patients (nausea, pneumonitis) and 5 (4.5%) certolizumab pegol-treated patients (bacterial arthritis, salmonella arthritis, increased blood creatinine/increased blood urea, ischaemic stroke, menorrhagia). No deaths were reported.

Injection site pain was reported in 1.8% and 0% of patients receiving placebo and certolizumab pegol, respectively. Injection site reactions occurred in 13.8% and 4.5% of patients, respectively. Of the patients who received active treatment and had detectable anti–certolizumab pegol antibodies at any time during the study, 9 (8.1%) had neutralising antibodies to certolizumab pegol. In patients who developed anti–certolizumab pegol antibodies, the ACR20 response rate at week 24 was reduced by approximately 5% compared with the population as a whole.

No cases of systemic lupus erythematosus (SLE) or SLE-like disease were reported. Antinuclear autoantibodies (ANA) titres from baseline to week 24 or withdrawal increased in 17% of certolizumab pegol–treated patients compared with 11% of placebo-treated patients, with the majority of patients in both groups (71% and 80%, respectively) showing no change in ANA titres during the 24-week study.
DISCUSSION

This study demonstrated the efficacy of SC certolizumab pegol 400 mg monotherapy (administered q4w) in treating the signs and symptoms of active RA in patients who had failed treatment with ≥1 DMARD, with 45.5% of certolizumab pegol–treated patients achieving an ACR20 response by week 24 versus only 9.3% of placebo-treated patients.

The response to certolizumab pegol was rapid, as significantly more patients achieved ACR20 responses (as well as all other responses, including patient-reported outcomes) as early as week 1 of treatment compared with placebo. Clinical responses were durable and sustained through to week 24. Significantly fewer certolizumab pegol patients (21.6%) withdrew due to lack of efficacy compared with placebo (68.8%), and withdrawal rates were similar to those observed in previous monotherapy trials.9,14,24 Certolizumab pegol has also been shown to be effective when used in combination with MTX every two weeks, with an ACR20 response rate of ~60%.4,10

Improvements in patient-reported outcomes observed with certolizumab pegol were clinically meaningful, as demonstrated by the proportion of patients with changes ≥MCIDs for the HAQ-DI, SF-36, pain VAS and FAS. Treatments that reduce RA-related pain and fatigue are important because these symptoms are often cited by patients as having a negative impact on their everyday lives, leading to reduced physical and social function, anxiety and depression, disrupted leisure activities and limitations in employment.20,25,26

Certolizumab pegol was associated with a low incidence of discontinuation due to AEs (4.5%). The rate of serious infections was 1.8% for certolizumab pegol versus 0% for placebo. There were no reports of tuberculosis, opportunistic infections, malignancy (including lymphoma), demyelinating disease or congestive heart failure in either group. The incidence of injection site reactions (4.5%) was low with certolizumab pegol; the incidence of injection site pain (0%) was also low and comparable with placebo. Overall, within the limited of duration of exposure, the AE profile for certolizumab pegol is consistent with other TNFα inhibitors.14

Nine (8.1%) patients developed neutralising antibodies to certolizumab pegol. These results are consistent with data reported for other anti-TNFα agents. Formation of antibodies to adalimumab or infliximab have been reported in ~5% and ~10%, respectively, of adult RA patients, and patients who were adalimumab– or infliximab antibody–positive were more likely to have reduced efficacy.27,28 The ACR20 response rate at week 24 was reduced by only approximately 5% in patients who developed anti–certolizumab pegol antibodies versus the whole population. No autoimmune clinical manifestations (e.g. lupus-like syndrome) were observed.

Clinical trials with etanercept29 or adalimumab,30 and observational studies,91 have suggested that using an anti-TNFα agent in combination with MTX is more effective than anti-TNFα monotherapy. Unfortunately, a sizeable subset of patients with RA is intolerant to, or has a contraindication to use of MTX and for these individuals anti-TNF monotherapy can be an important therapeutic option.

The results of this study, demonstrating the efficacy and safety of SC certolizumab pegol 400 mg q4w in the absence of concomitant MTX therapy, support the use of anti-TNFα monotherapy as an effective treatment option for RA patients who cannot tolerate or who have a contraindication to MTX. As the first SC anti-TNFα agent shown to be effective at once-monthly dosing, certolizumab pegol provides an effective overall treatment for RA patients, with a rapid, meaningful and durable clinical response and an acceptable safety profile.
ACKNOWLEDGEMENTS

The authors wish to acknowledge the editorial services provided by PAREXEL.

COMPETING INTERESTS

Potential competing interests are disclosed as follows: Jiri Vencovsky has received a fee from UCB, Inc, for speaking at a National Congress; Ronald van Vollenhoven has received consulting fees from UCB, Inc; David Borenstein has received reimbursement from UCB, Inc, for attending a symposium and funds for research; Jane Box has received reimbursement from UCB, Inc, for attending a symposium and funds for research; Geoffroy Coteur is a full-time employee of and holds stocks in UCB, Inc; Alison Innes is a full-time employee at UCB, Inc, and has shares in the company; Niti Goel is a full-time employee of UCB, Inc, and has shares and stock options in the company; Hans-Peter Brezinschek has no competing interests to declare; Vibeke Strand has worked as an independent biopharmaceutical consultant in clinical development and regulatory affairs since September 1991 and is currently a consultant to various companies, but has not and does not now hold stock in any company. Roy Fleischmann has received consulting fees and funds for clinical research from UCB, Inc.

FUNDING

The FAST4WARD study was funded by UCB Inc. UCB Inc. contributed to the design, conduct, and reporting of the study.
Figure Legends

Figure 1 Patient disposition. Modified intent-to-treat (mITT) population: all randomised patients who had taken at least one dose of study medication.

Figure 2 Efficacy of certolizumab pegol: ACR response rates (modified intent-to-treat [mITT] population). A) Treatment with certolizumab pegol 400 mg was statistically significant vs placebo at week 24 for ACR20 and ACR50 (p<0.001) and ACR70 (p≤0.05). B) ACR20, ACR50 and ACR70 responses with certolizumab pegol 400 mg were statistically significant vs placebo over time (p≤0.05 at all time points, with the exceptions of ACR70 at weeks 1, 2, 4 and 16).

Figure 3 LS mean change from baseline in ACR core component scores (modified intent-to-treat [mITT] population). LS mean change from baseline in A) tender joint count, B) swollen joint count, C) Health Assessment Questionnaire–Disability Index (HAQ-DI) and D) patient’s assessment of arthritis pain (visual analogue scale [VAS]) were all statistically significantly superior for certolizumab pegol 400 mg vs placebo from week 1 following administration of study drug and at all time points throughout the 24-week study period (p≤0.01).
References

18. Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. 1993, *SF-36 Health Survey Manual and Interpretation Guide* New England Medical Center The Health Institute, Boston, MA.

Randomized (ITT)
N = 220

Placebo
n = 109 (mITT)

- 81 (74.3%) Withdrawn
 - 75 (68.8%) Lack of efficacy
 - 2 (1.8%) Adverse event
 - 1 (0.9%) Protocol violation
 - 3 (2.8%) Lost to follow-up
 - 0 (0.0%) Consent withdrawn

Completed 24 weeks
n = 28 (25.7%)

Certolizumab pegol 400 mg
n = 111 (mITT)

- 35 (31.5%) Withdrawn
 - 24 (21.6%) Lack of efficacy
 - 5 (4.5%) Adverse event
 - 4 (3.6%) Protocol violation
 - 0 (0.0%) Lost to follow-up
 - 2 (1.8%) Consent withdrawn

Completed 24 weeks
n = 76 (68.5%)
ACR20/50/70 response rates at week 24 (mITT population)

- ACR20
- ACR50
- ACR70

A

Patients (%)

Placebo (n = 109)
- ACR20: 9.3
- ACR50: 3.7
- ACR70: 0

Certolizumab pegol 400 mg (n = 111)
- ACR20: 45.5*
- ACR50: 22.7**
- ACR70: 5.5**

*p < 0.001; **p ≤ 0.05

B

ACR20/50/70 response rates over time (mITT population)

- Placebo (n = 109)
- Certolizumab pegol 400 mg (n = 111)

p ≤ 0.05 vs placebo for all certolizumab pegol time points (with the exception of ACR70 at weeks 1, 2, 4 and 16).
Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: the FAST4WARD study

Roy Fleischmann, Jiri Vencovsky, Ronald van Vollenhoven, David Borenstein, Jane Box, Geoffroy Coteur, Niti Goel, Hans-Peter Brezinschek, Alison Innes and Vibeke Strand

Ann Rheum Dis published online November 17, 2008

Updated information and services can be found at: http://ard.bmj.com/content/early/2008/11/17/ard.2008.099291

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Open access (593)
Connective tissue disease (4253)
Degenerative joint disease (4641)
Immunology (including allergy) (5144)
Musculoskeletal syndromes (4951)
Rheumatoid arthritis (3258)
Biological agents (545)
Drugs: musculoskeletal and joint diseases (700)
Inflammation (1251)
Pain (neurology) (883)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/