EXTENDED REPORT

Subcutaneous golimumab for children with active polyarticular-course juvenile idiopathic arthritis: results of a multicentre, double-blind, randomised-withdrawal trial


ABSTRACT

Objective This report aims to determine the safety, pharmacokinetics (PK) and efficacy of subcutaneous golimumab in active polyarticular-course juvenile idiopathic arthritis (polyJIA).

Methods In this three-part randomised double-blind placebo-controlled withdrawal trial, all patients received open-label golimumab (30 mg/m² of body surface area; maximum: 50 mg/dose) every 4 weeks together with weekly methotrexate during Part 1 (weeks 0–16). Patients with at least 30% improvement per American College of Rheumatology Criteria for JIA (JIA ACR30) in Part 1 entered the double-blinded Part 2 (weeks 16–48) after 1:1 randomisation to continue golimumab or start placebo. In Part 3, golimumab was continued or could be restarted as in Part 1. The primary outcome was JIA flares in Part 2; secondary outcomes included JIA ACR50/70/90 responses, clinical remission, PK and safety.

Results Among 173 patients with polyJIA enrolled, 89.0% (154/173) had a JIA ACR30 response and 79.2%/65.9%/36.4% demonstrated JIA ACR50/70/90 responses in Part 1. At week 48, the primary endpoint was not met as treatment groups had comparable JIA flare rates (golimumab vs placebo: 32/78=41% vs 36/76=47%; p=0.41), and rates of clinical remission were comparable (golimumab vs placebo: 10/78=12.8% vs 9/76=11.8%). Adverse event and serious adverse event rates were similar in the treatment groups during Part 2. Injection site reactions occurred with <1% of all injections. PK analysis confirmed adequate golimumab dosing for polyJIA.

Conclusion Although the primary endpoint was not met, golimumab resulted in rapid, clinically meaningful improvement in children with active polyJIA. Golimumab was well tolerated, and no unexpected safety events occurred.

Clinical Trial Registration NCT01230827; Results.

INTRODUCTION

Juvenile idiopathic arthritis (JIA) is a group of diseases characterised by chronic immune-mediated arthritis of unknown aetiology with disease onset before age 16.1 First-line therapy for children with a polyarticular course of JIA (polyJIA) includes non-steroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX). Children who are intolerant to MTX or fail to achieve adequate disease control may require treatment with biological disease-modifying antirheumatic drugs (DMARDs).2,3 Golimumab is a fully human, antitumour necrosis factor (TNF)α monoclonal antibody that can be administered by either intravenous infusion or subcutaneous injection. Clinical trials in adults support the efficacy and safety of subcutaneous golimumab for the treatment of rheumatoid arthritis (RA), psoriatic arthritis, ankylosing spondylitis and ulcerative colitis.4 The objectives of the GO-KIDS study were to evaluate the efficacy, safety and pharmacokinetics of subcutaneous golimumab in children with active polyJIA despite MTX therapy. Here, we report efficacy through week 96 and safety results through the final database lock (325.6 patient-years (PY) of golimumab exposure).

METHODS

Study design

This three-part placebo-controlled, double-blind, randomised withdrawal trial was conducted by members of the Paediatric Rheumatology International Trials Organisation (PRINTO)5 and the Paediatric Rheumatology Collaborative Study Group (PRC...
Clinical and epidemiological research

Group (PRCSG) at 33 centres in 12 countries in Europe, Latin America, Canada and the USA.

Part 1 of the study was a 16-week, open-label, lead-in period in which all patients received subcutaneous golimumab dosed at 30 mg/m² of body surface area (maximum dose: 50 mg) every 4 weeks. At week 16, patients entered the double-blind withdrawal period (Part 2), provided they had a JIA American College of Rheumatology (ACR) 30 response,9 that is, >30% improvement in at least three of the six JIA ACR core response variables (CRVs) without ≥30% worsening in more than one of the remaining JIA CRVs compared with baseline. Patients who failed to achieve a JIA ACR30 response in Part 1 were discontinued from the study (see online supplementary material).

Upon entry in Part 2 (weeks 16–48), patients were randomly assigned 1:1, in a double-blind manner, to either receive placebo or continue golimumab. Randomisation, using an algorithm, was done via an interactive voice response system with stratification by geographic region (Europe, North America, Latin America), JIA disease type (psoriatic subtype vs other subtypes), prior anti-TNFα therapy and age at enrolment.

Patients continued in Part 2 until week 48, unless they experienced a JIA flare, that is, ≥30% worsening in at least three of the six JIA CRVs without >30% improvement in more than one of the remaining JIA CRVs compared with week 16. After week 48, patients could enter Part 3 and receive open-label golimumab at the same dose received in Part 1. However, patients randomised to placebo in Part 2 who were in clinical remission at week 48 were discontinued from the study per protocol. Although Part 3 was scheduled to continue through week 248, at week 48 were discontinued from the study per protocol. The trial was conducted in accordance with the Declaration of Helsinki, Good Clinical Practice Guidelines and local requirements. Enrolment commenced in December 2010, and the last patient completed Part 2 in August 2013; the study was discontinued with the last dose of study drug administered on 31 March 2014, and the last study-related procedure occurred on 27 May 2014.

The trial was registered with ClinicalTrials.gov (NCT01230827).

Patients

Patients aged 2–17 years diagnosed with rheumatoid factor (RF)-positive or RF-negative pauciarticular, extended oligoarticular JIA, systemic JIA without systemic features or juvenile psoriatic arthritis (JPsA),1 and disease duration of ≥6 months were eligible. All patients had to have active JIA (≥5 joints with active arthritis: ie, the presence of joint swelling or, in the absence of swelling, limitation of range of motion (LROM) plus pain on motion and/or tenderness on palpation) despite ≥3 months of MTX treatment (10–30 mg/m²/week; ≥15 mg/week for patients with body surface area ≥1.67). The study mandated that 80% of the enrolled patients be naïve to biologic DMARDs, while the remaining patients could have failed at most one anti-TNFα medication. Stable doses of NSAIDs, low-dose corticosteroids (maximum prednisone equivalent: 0.2 mg/kg/day or 10 mg, whichever was lower) were allowed. MTX and corticosteroid dosing were kept stable through week 48. Additional eligibility criteria are listed in the online supplementary material.

Assessments and outcome measures

Clinical assessments included the six JIA CRVs: number of joints with active arthritis, number of joints with LROM, visual analogue scale (VAS) of physician global assessment (PGA) of disease activity (range in cm: 0–10; 0=inactive JIA), VAS of parent assessment of the child’s overall well-being (PatGA) (range: 0–10 cm; 0=very well), physical function measured by the Childhood Health Assessment Questionnaire (CHAQ)-Disability Index (range: 0–3; 0=no disability)15 and the erythrocyte sedimentation rate (ESR) as a laboratory measure of inflammation. Clinically inactive disease was defined as a PGA indicating no disease activity (≤0.5 cm) plus absence of all of the following: joints with active arthritis, morning stiffness of ≥15 min, ESR >20 mm/h, active uveitis and systemic features attributable to JIA.9 Presence of clinically inactive disease continuously for ≥6 months constituted clinical remission while on medication for JIA.8 The primary efficacy endpoint was the proportion of patients with no JIA flare9 during Part 2, compared with week 16; however, we report here the proportion of patients with JIA flare, consistent with the prevailing literature. Secondary endpoints included JIA ACR30/50/70/90 responses,9 changes in the JIA-CRVs compared with baseline and the presence of inactive disease and clinical remission.8

For post-hoc exploratory analysis, we calculated the Juvenile Arthritis Disease Activity Score using erythrocyte sedimentation rate (JADAS71-ESR; range: 0–101; inactive JIA: ≤1.0; minimal JIA activity: ≤2.0).10 11 Evaluations of JIA flare (primary outcome), JIA ACR response rates, inactive disease or clinical remission were all performed in real time by independent blinded evaluators at the coordinating centres of PRINTO and PRCSG, according to validated criteria. The analyses presented in the manuscript are based on in-house analyses.6–8 13 14

Pharmacokinetics, antibodies to golimumab and biomarkers

Blood samples for pharmacokinetics (PK) and immunogenicity were collected throughout the study. PK analyses were conducted at week 8 for a subset of 30 patients, for 121 patients at week 16 and for all patients at week 48. Serum golimumab concentrations were measured by a validated electrochemiluminescent assay and compared with those previously found efficacious in adults with RA receiving subcutaneous golimumab. Antibodies to golimumab were assayed using a highly sensitive, drug-tolerant, enzyme immunoassay that was recently developed and validated (data on file). Patients who were positive for antibodies to golimumab were then tested for neutralising antibodies.

Serum biomarkers, including interleukin-6, C reactive protein (CRP), serum amyloid A (V-PLEX platform, Meso Scale Diagnostics, Rockville, Maryland, USA) in patients with paired samples drawn at baseline and week 16 (n=147) were also evaluated.

Statistical analysis

The study report followed the CONSORT statement.16 Primary endpoint analysis used the Cochran-Mantel-Haenszel (CMH) test, stratified by JIA disease categories, prior anti-TNFα therapy and age. Intention-to-treat analysis was performed. For continuous variables, missing changes from baseline were imputed using the median change from baseline for all patients in the same stratum, and the last-observation-carried-forward methodology was used for missing postbaseline data. For secondary endpoints, the CMH test was used to determine statistical significance for differences in JIA ACR30/50/70/90 responders at week 48 relative to baseline. After week 48, no data imputation was performed for study visits, hence only observed data are
available. Survival analysis was performed and Kaplan-Meier estimates calculated. The log-rank test, adjusted for stratification criteria, was used to test for significant differences between treatment groups in the median time to flare in Part 2. Post-hoc analyses were performed to identify predictors of flares.

The safety population included all enrolled patients (n=173). Serious infections were defined in accordance with the definition of serious adverse events (SAEs) in the International Conference on Harmonisation guidelines.17

Sample size estimation assumed flare rates of 37% for the golimumab group and 65% for the placebo group in Part 2, based on published data.18 Assuming an 85% JIA ACR30 response rate in Part 1, it was estimated that enrolment of 170 patients was needed so that ≥134 patients (67 per group) entered Part 2 to achieve ≥90% power to detect a significant difference in JIA flare rates between groups using a two-sided significance test with $\alpha=0.05$. Two planned interim analyses were performed: at week 8, in the first 30 patients enrolled for futility analyses and for PK comparison of golimumab exposure in JIA with target exposures determined to be similar to those in adults with RA; and at week 16, for population PK and to test whether the planned enrolment suffices to yield an adequate number of patients to enter Part 2. Results of these interim analyses (data not shown) indicated the study should continue as planned.

RESULTS
Patient disposition and baseline characteristics
In Part 1, 173 patients were enrolled and received golimumab (figure 1); of these, 19 patients discontinued the study before

![Figure 1](http://ard.bmj.com/ on December 14, 2017 - Published by group.bmj.com)
Through week 16, response to golimumab was comparable in patients with JPsA (n=15) to that of the other 158 patients (data not shown); however, interpretation of these results is limited by the small number of patients with JPsA.

Response to double-blind study medication in part 2
The primary endpoint at week 48 was not met. The proportions of patients with JIA flares were comparable in both treatment groups (placebo vs golimumab: 36/76=47.4% vs 32/78=41.0%; p=0.41; see online supplementary table S1). The median time to flare was similar between groups (placebo: 95.6 weeks; golimumab: 108.4 weeks; figure 3A). At week 48, and irrespective of treatment allocation in Part 2, the majority of patients were improved compared with baseline. There was no difference in the frequency of clinical remission between treatment groups (placebo vs golimumab: 11.8% vs 12.8%; p=0.848; figure 3B). Mean changes in JADAS71-ESR scores were also similar in both treatment groups at week 48 (figure 3C). Flare rates among patients who continued with golimumab after week 16 remained relatively similar regardless of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with less of the baseline CRP levels, while flare rates increased with
Increasing baseline CRP levels for patients receiving placebo (figure 3D).

Long-term response after week 48 in part 3

Among the 76 patients randomised to placebo, 33 flared and received golimumab before week 48, while the remaining 10 patients were in clinical remission at week 48. The latter patients were discontinued as per protocol at week 48. Measures of treatment response and JIA activity observed at week 96 are summarised in table 2. At week 96, the randomisation groups did not differ significantly in the proportion...
of patients achieving clinical inactive disease (placebo vs golimumab: 27/64 = 42.2% vs 33/69 = 47.8%; p = 0.119). At the time of the final database lock (golimumab for up to 160 weeks), there were no differences in the proportion of patients in remission between randomisation groups: 44.9% (35/78) of patients randomised to golimumab during Part 2 and 43.4% (33/76) of patients randomised to placebo during Part 2; nor were there differences in the mean JADAS71-ESR scores (data not shown).

**Biomarker analysis**

In Part 1, higher JIA ACR response rates at week 16 were associated with lower baseline levels of inflammatory cytokines (e.g., interleukin-6, CRP, serum amyloid A), blood neutrophils and ESR (see online supplementary figure S1, supplementary table S2). Likewise, levels of inflammatory cytokines (baseline, week 16) were associated with week 48 JIA outcomes, positively with JIA flare rates and negatively with JIA improvement (inactive disease, clinical remission) in patients randomised to placebo but not those who continued golimumab in Part 2 (see online supplementary figure S2, supplementary table S3).

**Safety**

For the safety population (n = 173) AEs and SAEs that occurred throughout the study are summarised in table 3, providing information on 325.6 PY of golimumab exposure. Overall during the study, 160 (92.5%) patients reported ≥1 AE and 39 (22.5%) patients reported 35 SAEs. AEs that occurred in ≥10% of patients included upper respiratory infections (28.3%), nasopharyngitis (23.4%), JIA flare (22.5%) and vomiting (14.5%). Rates of AEs and SAEs were similar across the two exposure groups in Part 2 (AEs/SAEs per 100 PY exposure; randomised to golimumab: 358.5/17.1, randomised to placebo: 526.3/32.5).

There were 116 AEs occurring in 88 patients that were considered possibly, probably or definitely related with golimumab treatment by the investigator and 12 AEs that were considered

---

**Figure 3**

(A) Kaplan-Meier plot of JIA flare events starting Part 2 of the study. (B) Proportions of randomised patients with a JIA ACR30/50/70/90 response and clinical remission at week 48 as compared with baseline (week 0). (C) Mean change in JADAS71-ESR through week 48. (D) The proportion of patients who flared during the trial. Flare rates remained relatively stable over time among patients who continued with golimumab after week 16 and remained relatively similar regardless of the baseline CRP levels. However, among patients receiving placebo in Part 2, the proportion of patients who flared in Part 2 increased depending on CRP levels at baseline: for example, for patients with baseline CRP levels ≥0.02 mg/dL, the flare rate was 48.6% (35/72) and for those with baseline CRP levels ≥1.0 mg/dL, the flare rate was 86.7% (13/15). JIA ACR30/50/70/90, ≥30%/50%/70%/90% improvement in the American College of Rheumatology juvenile idiopathic arthritis response criteria; CRP, C reactive protein; JADAS71-ESR, Juvenile Arthritis Disease Activity Score using erythrocyte sedimentation rate; JIA, juvenile idiopathic arthritis.
The safety profile of golimumab was consistent with that observed in adults with RA receiving approved dosages (data not shown). A total of 46.8% (72/154) of the randomised patients tested positive for antibodies to golimumab, of which eight (8/154 = 5.2%) had high-titre antibodies (>1:1000). There was no apparent difference in the incidence of antibodies to golimumab between patients who received golimumab continuously compared with those receiving placebo through the week-48 database lock; 33 patients crossed over to golimumab before week 48 and 33 patients crossed over to golimumab after week 48. After week 48, no data imputation was performed for study visits that occurred after the study termination date.

*Patients who achieved protocol-defined clinical remission at any time from week 24 through the final database lock.

JADAS71-ESR, Juvenile Arthritis Disease Activity Score using erythrocyte sedimentation rate; JIA ACR30/50/70/90, ≥30%/50%/70%/90% improvement in the American College of Rheumatology juvenile idiopathic arthritis response criteria.

DISCUSSION

Results of this study demonstrate that subcutaneous golimumab dosed at 30 mg/m² body surface area (maximum: 50 mg) every 4 weeks resulted in a rapid response to open-label therapy, had an acceptable safety profile and yielded a similar PK profile as that achieved in adults with RA. Although on background medications, including mandatory MTX, after three doses of golimumab, 34.1% (59/173) of the patients reached clinical inactive disease status. Importantly, the primary endpoint of this trial was not met as the placebo and golimumab groups did not differ in JIA flare rates during the double-blinded period of the study (Part 2).

The randomised withdrawal design has been successfully used for the study of biological DMARDs in JIA, including those blocking TNFα. This trial design was introduced in JIA for ethical reasons to minimise placebo exposure and for sample size consideration, but the design also has limitations: the clinical effects of biological DMARDs often exceed their pharmacological half-life, resulting in delayed flare events in the placebo groups. The reasons for the sustained JIA control in patients receiving placebo in Part 2 remain unknown.

However, levels of inflammatory cytokines, especially at baseline, were significantly associated with JIA courses (high: JIA flare, low: inactive disease, clinical remission) at week 48 in the placebo arm but not the golimumab arm. Thus, the low inflammatory burden of the study population (mean baseline CRP: 5.2±10.8 mg/dL) vs 16/27 (n=68) of patients discontinuing the study because of AEs. Although occur-

Clinical pharmacology

Steady-state trough serum golimumab concentrations at the dosage regimen chosen for this study were similar to those observed in adults with RA receiving approved dosages (data not shown). A total of 46.8% (72/154) of the randomised patients tested positive for antibodies to golimumab, of which eight (8/154 = 5.2%) had high-titre antibodies (>1:1000). There was no apparent difference in the incidence of antibodies to golimumab between patients who received golimumab continuously compared with those receiving placebo in Part 2 (14/28=50.0% vs 16/35 45.7%). Sixty-six patients were evaluable for neutralising antibodies (NAb); of these, 45.5% (30/66) were positive for NAB (overall NAb incidence of 19.5%). Patients who were antibody positive with low titres had golimumab concentrations similar to patients who were negative for antibodies to golimumab. However, patients who were antibody positive with titres >1:1000 generally had NAb and lower golimumab concentrations. In this study, the formation of antibodies to golimumab did not appear to have a substantial impact on clinical efficacy. Of the eight patients with titres >1:1000, none experienced disease flare, and seven achieved JIA ACR30 response. Additionally, a positive antibodies-to-golimumab status and antibody titre levels did not appear to be associated with injection site reactions. However, the number of patients with high antibody titres was small, limiting the ability to definitively assess the clinical impact of antibodies to golimumab.
In conclusion, the primary study endpoint was not met. However, treatment with golimumab in children with active polyarticular course of JIA resulted in rapid clinically meaningful improvement that was maintained over time even in patients who received placebo after week 16. Golimumab was well tolerated, and no unexpected safety events occurred.

Author affiliations
1Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
2Istituto Giannina Gaslini, Pediatría II - Rheumatologia, PRINTO, Genoa, Italy
3Pediatric Rheumatology Research Institute, Bad Bramstedt, Germany
4Department of Pediatrics, Asklepios Clinic Sankt Augustin, Sankt Augustin, Germany
5Hospital Pediatric, State Pediatric Medical Academy, Saint Petersburg, Russian Federation
6Centre of Pediatrics, Vilnius University, Vilnius, Lithuania
7Regional Unit of Rheumatology and Osteoporosis, Central Hospital “Dr. Ignacio Morones Prieto” and Faculty of Medicine, Universidad Autónoma de San Luis Potosí, Mexico, San Luis Potosí, Mexico
8Department of Rheumatology, Children’s Hospital of Los Angeles, Los Angeles, California, USA
9Children’s Health of AMS and IM Sechenov First Moscow State Medical University, Moscow, Russian Federation
10Hospital Universitario, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
11Samara Regional Clinical Hospital, Samara, Russian Federation
12Randall Children’s Hospital at Legacy Emanuel, Portland, Oregon, USA
13Hospital Infantil de Mexico Federico Gomez, Distrito Federal, Mexico
14Pediatric Department, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russian Federation
15Department of Rheumatology, The Hospital for Sick Children, Toronto, Canada
16ZNA Jan Pallin, Antwerpen, Belgium
17Medical University of Łódź, Łódź, Poland
18Hospital Pueño Príncipe, Curitiba, Brazil
19Department of Pediatric Rheumatology, Charité University Medicine, Berlin, Germany
20University Children’s Hospital, Wien, Austria
21University Children’s Hospital of Los Angeles, Los Angeles, California, USA
22Klinikum Eilbek, Hamburger Zentrum für Kinder- und Jugendrheumatologie, Hamburg, Germany
23Klinikum Eilbek, Hamburger Zentrum für Kinder- und Jugendrheumatologie, Hamburg, Germany
24Pôle de pathologies rhumatismales systémiques et inflammatoires, Université catholique de Louvain, Institut de Recherche Clinique, Brussels, Belgium
25Children’s Health of AMS and IM Sechenov First Moscow State Medical University, Moscow, Russian Federation
26Hospital Universitario, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
27Samara Regional Clinical Hospital, Samara, Russian Federation
28Randall Children’s Hospital at Legacy Emanuel, Portland, Oregon, USA
29Hospital Infantil de Mexico Federico Gomez, Distrito Federal, Mexico
30Pediatric Department, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russian Federation
31Department of Rheumatology, The Hospital for Sick Children, Toronto, Canada
32ZNA Jan Pallin, Antwerpen, Belgium
33Medical University of Łódź, Łódź, Poland
34Hospital Pueño Príncipe, Curitiba, Brazil
35Department of Pediatric Rheumatology, Charité University Medicine, Berlin, Germany
36Department of Paediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
37University Children’s Hospital of Los Angeles, Los Angeles, California, USA
38Children’s Health of AMS and IM Sechenov First Moscow State Medical University, Moscow, Russian Federation
39Hospital Universitario, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
40Samara Regional Clinical Hospital, Samara, Russian Federation
41Randall Children’s Hospital at Legacy Emanuel, Portland, Oregon, USA
42Hospital Infantil de Mexico Federico Gomez, Distrito Federal, Mexico
43Pediatric Department, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russian Federation
44Department of Rheumatology, The Hospital for Sick Children, Toronto, Canada
45ZNA Jan Pallin, Antwerpen, Belgium
46Medical University of Łódź, Łódź, Poland
47Hospital Pueño Príncipe, Curitiba, Brazil
48Department of Pediatric Rheumatology, Charité University Medicine, Berlin, Germany
49Department of Paediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
50University Children’s Hospital of Los Angeles, Los Angeles, California, USA
51Children’s Health of AMS and IM Sechenov First Moscow State Medical University, Moscow, Russian Federation
52Hospital Universitario, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
53Samara Regional Clinical Hospital, Samara, Russian Federation
54Randall Children’s Hospital at Legacy Emanuel, Portland, Oregon, USA
55Hospital Infantil de Mexico Federico Gomez, Distrito Federal, Mexico
56Pediatric Department, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russian Federation
57Department of Rheumatology, The Hospital for Sick Children, Toronto, Canada
58ZNA Jan Pallin, Antwerpen, Belgium
59Medical University of Łódź, Łódź, Poland
60Hospital Pueño Príncipe, Curitiba, Brazil
61Department of Pediatric Rheumatology, Charité University Medicine, Berlin, Germany
62Department of Paediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
63University Children’s Hospital of Los Angeles, Los Angeles, California, USA
64Children’s Health of AMS and IM Sechenov First Moscow State Medical University, Moscow, Russian Federation
65Hospital Universitario, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
66Samara Regional Clinical Hospital, Samara, Russian Federation
67Randall Children’s Hospital at Legacy Emanuel, Portland, Oregon, USA
68Hospital Infantil de Mexico Federico Gomez, Distrito Federal, Mexico
69Pediatric Department, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russian Federation
70Department of Rheumatology, The Hospital for Sick Children, Toronto, Canada
71ZNA Jan Pallin, Antwerpen, Belgium
72Medical University of Łódź, Łódź, Poland
73Hospital Pueño Príncipe, Curitiba, Brazil
74Department of Pediatric Rheumatology, Charité University Medicine, Berlin, Germany
75Department of Paediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
76University Children’s Hospital of Los Angeles, Los Angeles, California, USA
77Children’s Health of AMS and IM Sechenov First Moscow State Medical University, Moscow, Russian Federation
78Hospital Universitario, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
79Samara Regional Clinical Hospital, Samara, Russian Federation
80Randall Children’s Hospital at Legacy Emanuel, Portland, Oregon, USA
81Hospital Infantil de Mexico Federico Gomez, Distrito Federal, Mexico
82Pediatric Department, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russian Federation
83Department of Rheumatology, The Hospital for Sick Children, Toronto, Canada
84ZNA Jan Pallin, Antwerpen, Belgium
85Medical University of Łódź, Łódź, Poland
86Hospital Pueño Príncipe, Curitiba, Brazil
87Department of Pediatric Rheumatology, Charité University Medicine, Berlin, Germany
88Department of Paediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
89University Children’s Hospital of Los Angeles, Los Angeles, California, USA
Correction notice This article has been corrected since it published Online First. The PRINTO and PRCSG statement has been added to the list of authors.

Acknowledgements The authors thank the staff from the PRINTO and PRCSG coordinating centres, and the remaining PRINTO and PRCSG centres which enrolled patients in the GO-KIDS trial. Additional investigators include from Austria, Christian Huemer MD; from Belgium, Carine Wouters MP; from Brazil, Claudia Magalhaes MD; from Canada, Adam Haber MD; from Finland, Paula Vahakosalo MD; and from the USA Diana Milojivic MD, Ega Rabinovich MD. Hans-Iko Huppertz, MD, PhD, Bremen, Germany, declined the offered authorship of this paper but gave permission to include patients recruited from his centre to be considered in the analysis. The authors also thank Kim Hung Lo, PhD, for involvement in the trial design, Stephen Xu, MS, for additional statistical support from Nancy Pefler, BS, and Carol Franks, BS, for biomarker data generation, all from Janssen Research & Development, LLC, and Rebecca Clemente, PhD, of Janssen Scientific Affairs, LLC, for editorial assistance. A special thanks to Dr Alan Mendelsohn, formerly of Janssen Research & Development, LLC for his contributions in study design and implementation and advocacy for all children enrolled in GO-KIDS.

Contributors Study design: HIB, NR, AM, DJL; data collection and/or analysis: HIB, NR, NT, GH, VGC, VP, CAM, AR, EA, NRP, VK, DJK, MRMV, IN, EDS, RJ, ES, MB, KM, ARK, WE, IF, BRL, FS, KEG, ZH, JL, KL, SLL, MLL, DJL, AM; manuscript: All authors drafted and/or revised the manuscript and approved the manuscript for submission.

Funding This study was funded by Janssen Research & Development, LLC, a wholly owned subsidiary of Johnson & Johnson, and Merck/Schering-Plough.

Competing interests HIB has served as a consultant and steering committee member for Janssen Research & Development, a consultant for AstraZeneca, Pfizer and takeda and received research support from Novartis, Roche and UCB. NR served on the speaker’s bureau and as a consultant for AbbVie, Amgen, Altar, AstraZeneca, Baxalta Biosimilars, Biogen Idec, Boehringer, BMS, Celgene, CrescendoBiO, EMD Serono, F. Hoffmann-La Roche, Italfarmaco, Janssen, Medimmune, Medac, Novartis, Novo Nordisk, Pfizer, Sanofi Aventis, Servier, Takeda and UCB Bionce GmbH. DJL has served as a consultant for Boehringer Ingelheim, Celgene, Janssen Research & Development and Novartis, as a trial investigator for AbbVie, Bristol-Myers Squibb, Janssen Research & Development, Roche, Pfizer and UBC and received research support from the National Institutes of Health. NRP received fees from AbbVie and Roche. FS received research support from Janssen. KM received research support from Pfizer, AbbVie, Roche and Deutsche Kinder-RheumaStiftung and fees from AbbVie, Genzyme, Medac, Pfizer and Pharm-Allergan. IN received fees from AbbVie, Bristol-Myers Squibb, Novartis, Pfizer and Roche and grants from Pfizer and Roche. EA received research support from AbbVie, Bristol-Myers Squibb, Janssen, Novartis, Pfizer and Roche and fees from AbbVie, Bristol-Myers Squibb, Medac, Merck & Dohme, Novartis, Pfizer and Roche. KEG, ZH, JL, KL, SLL and MLL are employees of Janssen Research & Development, LLC and own stock in Johnson & Johnson. AM received speaking and consulting fees from AbbVie, Boehringer, Celgene, CrescendoBiO, Janssen, Medimmune, Novartis, Novo Nordisk, Pfizer, Sanofi Aventis, Vertex and Servier. Nothing to disclose: NT, GH, VGC, CAM, AR, DJK, EDS, VP, MRMV, ES, MB, ARK, VK, RJ, WE, IF, BRL.

Ethics approval Institutional Review Board or Ethics Committee at each site.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Article author(s) (or their employer(s)) unless otherwise stated in the text of the article 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

Subcutaneous golimumab for children with active polyarticular-course juvenile idiopathic arthritis: results of a multicentre, double-blind, randomised-withdrawal trial


Ann Rheum Dis 2018 77: 21-29 originally published online May 15, 2017
doi: 10.1136/annrheumdis-2016-210456

Updated information and services can be found at:
http://ard.bmj.com/content/77/1/21

These include:

References
This article cites 23 articles, 7 of which you can access for free at:
http://ard.bmj.com/content/77/1/21#BBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Editor's choice (164)
Open access (646)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/