EXTENDED REPORT

Clinical benefit of 1-year certolizumab pegol (CZP) add-on therapy to methotrexate treatment in patients with early rheumatoid arthritis was observed following CZP discontinuation: 2-year results of the C-OPERA study, a phase III randomised trial

Tatsuya Atsumi,1 Yoshiya Tanaka,2 Kazuhiko Yamamoto,3 Tsutomu Takeuchi,4 Hisashi Yamanaka,5 Naoki Ishiguro,6 Katsumi Eguchi,7 Akira Watanabe,8 Hideki Origasa,9 Shin-suke Yasuda,1 Yuji Yamanishi,10 Yasuhiro Kita,11 Tsukasa Matsubara,12 Masahiro Iwamoto,13 Toshiharu Shoji,14 Osamu Togo,14 Hideki Origasa,9 Shinsuke Yasuda,1 Yuji Yamanishi,10 Yasuhiro Kita,11 Tsukasa Matsubara,12 Masahiro Iwamoto,13 Toshiharu Shoji,14 Osamu Togo,14 Toshiyuki Okada,15 Désirée van der Heijde,16 Nobuyuki Miyasaka,17 Takao Koike1,18

ABSTRACT

Objectives To investigate the clinical impact of 1-year certolizumab pegol (CZP) therapy added to the first year of 2-year methotrexate (MTX) therapy, compared with 2-year therapy with MTX alone.

Methods MTX-naïve patients with early rheumatoid arthritis (RA) with poor prognostic factors were eligible to enter Cetolizumab-Optimal Prevention of joint damage for Early RA (C-OPERA), a multicentre, randomised, controlled study, which consisted of a 52-week double-blind (DB) period and subsequent 52-week post treatment (PT) period. Patients were randomised to optimised MTX+CZP (n=159) or optimised MTX + placebo (PBO; n=157). Following the DB period, patients entered the PT period, receiving MTX alone (CZP+MTX→MTX; n=108, PBO+MTX→MTX; n=71). Patients who flared could receive rescue treatment with open-label CZP.

Results 34 CZP+MTX→MTX patients and 14 PBO +MTX→MTX patients discontinued during the PT period. From week 52 through week 104, significant inhibition of total modified total Sharp score progression was observed for CZP+MTX versus PBO +MTX (week 104: 84.2% vs 67.5% (p=0.001)). Remission rates decreased after CZP discontinuation; however, higher rates were maintained through week 104 in CZP+MTX→MTX versus PBO+MTX→MTX (41.5% vs 29.3% (p=0.026), 34.6% vs 24.2% (p=0.049) and 41.5% vs 33.1% (p=0.132) at week 104 in SDAI, Boolean and DAS28(erythrocyte sedimentation rate) remission. CZP retreated patients due to flare (n=28) showed rapid clinical improvement. The incidence of overall adverse events was similar between groups.

Conclusions In MTX-naïve patients with early RA with poor prognostic factors, an initial 1 year of add-on CZP to 2-year optimised MTX therapy brings radiographic and clinical benefit through 2 years, even after stopping CZP.

Trial registration number NCT01451203.

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by progressive inflammatory synovitis. This results in the destruction of articular cartilage and marginal bone, which is generally thought to be irreversible.1 Recent studies have demonstrated that the early treatment of patients with antirheumatic drugs is associated with a reduction in inflammation, greater inhibition of structural damage and better long-term outcomes.2 3 Furthermore, early aggressive treatment with biological disease-modifying antirheumatic drugs (bDMARDs), such as anti-tumour necrosis factors (TNFs), was reported to be highly effective at reducing disease progression.4 The effect of treatment discontinuation/tapering following successful inhibition of disease progression as a result of using bDMARDs early in the course of the disease has yet to be fully investigated; however, there is the possibility that the positive disease trajectory may be maintained following treatment cessation.

Certolizumab pegol (CZP) is a humanised anti-TNF antibody fragment conjugated to polyethylene glycol, approved for the treatment of inflammatory diseases, including RA. The efficacy and safety of CZP in combination with methotrexate (MTX) during the early stages of RA was assessed in the Certolizumab-Optimal Prevention of joint damage for Early RA (C-OPERA) study. This study consisted of two periods: a 52-week double-blind (DB) period during which patients received either CZP or placebo (PBO) together with MTX, and a subsequent 52-week post-PBO/CZP treatment (PT) period in which patients received MTX therapy without CZP or PBO. Results from the DB period, which showed significant inhibition of structural damage and a reduction in the severity of RA symptoms following treatment with CZP+MTX compared with PBO +MTX, have been reported.4 Here, we report the
2-year overall results including the PT period, which investigated whether the clinical benefits of initial 1-year CZP+MTX therapy were sustained through a subsequent 1-year period where patients received MTX alone.

METHODS

For the DB period were previously provided in the online supplementary materials. 1203 was a multicentre, DB, parallel-group study conducted in a blinded manner. Full details of the study are online supplementary materials.

Patients performed every 8 weeks during the analysis of the PT period was change in total Sharp score (mTSS) from baseline at week 52 and 104; mTSS was evaluated by two analyses comparing clinical efficacy included disease activity score (DAS28 on rate (ESR)), simple disease activity joint count (SJC), tender joint count and Questionnaire Disability Index (HAQ-DI), physician’s and patient’s global assessments of disease activity (PtGADA), patient’s assessment of arthritis pain, ESR and C-reactive protein (CRP) levels. Clinical remission was defined as achieving SDAI ≤3.3, DAS28(ESR) ≤2.6 or ≤1 on all four of the following criteria (Boolean remission): the number of TJC (in 28 joints), number of SJC (in 28 joints), CRP (mg/dL) and PtGADA (100 mm visual analogue scale (VAS) data converted to cm).

Safety assessments

All safety events during the PT period were recorded as adverse events (AEs) or serious AEs (SAEs). Laboratory tests (haematological, blood chemistry, urinalysis), chest radiographs and ECG were also evaluated.

Statistical analyses

Full details of the statistical analyses can be found in the online supplementary materials. In brief, the full analysis set (FAS; defined as all patients who received ≥1 dose of study drug and provided any efficacy data thereafter) was used for all efficacy measurements. Missing data were imputed using linear extrapolation for mTSS and last observation carried forward (LOCF) for all other efficacy variables. Change from baseline in mTSS at weeks 52 and 104 was analysed using an analysis of covariance (ANCOVA) model. Fisher’s exact test was used to compare rates of mTSS non-progression (mTSS change from baseline ≤0.5) and clinical remission at weeks 52 and 104, between the PBO and CZP groups.

RESULTS

Patient characteristics and disposition

Of the 316 patients who were randomised and received at least one dose of study drug (FAS population), 179 patients entered the intention of receiving CZP+MTX→MTX and PBO+MTX→MTX. Atsumi T, et al. Ann Rheum Dis 2017;76:1348–1356. doi:10.1136/annrheumdis-2016-210246

Clinical and epidemiological research
Clinical and epidemiological research

The proportion of patients completing the PT period (from the patients who entered the PT period) was 68.5% and 80.3% in the CZP+MTX→MTX group and the PBO+MTX→MTX group, respectively (figure 1).

Patient baseline demographics and disease characteristics at period entry (week 52) are shown in table 1. At DB baseline, both groups showed similar disease activity at baseline. The proportion of patients completing the PT period (from the baseline through week 52 following P+MTX or PBO+MTX).

Ge progression in the total

At week 52 the change from baseline in e of the primary analysis (linear extrapolation). At week 104, the proportion of patients with radiographic non-progression (ie, mTSS change from baseline ≤0.5) was higher for the CZP+MTX→MTX group compared with the PBO+MTX→MTX group using linear extrapolation for missing data imputation (figure 2A). A sensitivity analysis using an LOCF imputation method (figure 2A) confirmed the results of the primary analysis (linear extrapolation). At week 104, the proportion of patients with rapid radiographic progression (RRp: mTSS yearly change from baseline ≥5) at week 104 was lower for the CZP+MTX→MTX group compared with the PBO+MTX→MTX group (3.2% vs 9.6%, p=0.022). Subgroup analyses revealed that high baseline mTSS, CRP or TNF was associated with poor week 104 radiographic outcomes in the PBO+MTX→MTX group. The CZP+MTX→MTX group also showed higher inhibition of radiographic progression in these populations (see online supplementary table S3). Consistent with radiographic findings, the proportion of patients with HAQ remission (HAQ ≤0.5) at week 104 was numerically higher in the CZP+MTX→MTX group than the PBO+MTX→MTX group (73.0% vs 63.7%, p=0.09). In addition, the proportion of the patients who achieved HAQ remission at week 104 was higher in patients who showed non-radiographic progression at week 104 than those who did not (76.7% vs

TJC, swollen joint count; TJC, tender joint count.

<table>
<thead>
<tr>
<th>(\text{DB baseline})</th>
<th>(\text{PT baseline})</th>
<th>(\text{DB baseline})</th>
<th>(\text{PT baseline})</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.4±10.6</td>
<td>48.8±11.2</td>
<td>49.0±10.3</td>
<td>48.6±10.8</td>
</tr>
<tr>
<td>129 (81.1)</td>
<td>85 (78.7)</td>
<td>127 (80.9)</td>
<td>58 (81.7)</td>
</tr>
<tr>
<td>57.4±11.3</td>
<td>57.0±11.5</td>
<td>57.4±10.6</td>
<td>57.4±10.3</td>
</tr>
<tr>
<td>22.4±3.9</td>
<td>22.2±3.7</td>
<td>22.5±3.7</td>
<td>22.4±3.7</td>
</tr>
<tr>
<td>4.0±2.9</td>
<td>4.4±3.1</td>
<td>4.3±2.8</td>
<td>4.4±3.1</td>
</tr>
<tr>
<td>159 (100.0)</td>
<td>71 (100.0)</td>
<td>157 (100.0)</td>
<td>108 (100.0)</td>
</tr>
<tr>
<td>153 (96.2)</td>
<td>104 (96.3)</td>
<td>146 (93.0)</td>
<td>68 (95.8)</td>
</tr>
<tr>
<td>79 (49.7)</td>
<td>41 (47.2)</td>
<td>80 (51.0)</td>
<td>34 (47.9)</td>
</tr>
<tr>
<td>8.4±6.1</td>
<td>7.5±5.8</td>
<td>8.9±6.5</td>
<td>7.3±6.1</td>
</tr>
<tr>
<td>8.3±5.3</td>
<td>7.6±4.6</td>
<td>8.4±5.3</td>
<td>7.0±4.2</td>
</tr>
<tr>
<td>38.4±25.3</td>
<td>36.3±23.9</td>
<td>43.7±28.2</td>
<td>36.5±22.2</td>
</tr>
<tr>
<td>1.9±1.82</td>
<td>1.12±0.51</td>
<td>1.52±1.91</td>
<td>1.02±1.39</td>
</tr>
<tr>
<td>130.4±135.4</td>
<td>125.2±135.4</td>
<td>185.4±214.9</td>
<td>167.3±204.3</td>
</tr>
<tr>
<td>5.4±1.1</td>
<td>5.2±1.1</td>
<td>5.5±1.2</td>
<td>5.1±1.0</td>
</tr>
<tr>
<td>28.7±12.5</td>
<td>27.0±11.2</td>
<td>30.0±13.6</td>
<td>24.6±11.3</td>
</tr>
<tr>
<td>1.01±0.64</td>
<td>1.04±0.63</td>
<td>1.05±0.69</td>
<td>0.79±0.57</td>
</tr>
<tr>
<td>4.1±7.4</td>
<td>3.8±7.4</td>
<td>5.5±15.0</td>
<td>3.2±6.2</td>
</tr>
<tr>
<td>1.9±4.0</td>
<td>1.6±3.9</td>
<td>2.5±7.8</td>
<td>1.6±3.3</td>
</tr>
<tr>
<td>2.1±4.6</td>
<td>2.2±4.8</td>
<td>2.9±8.3</td>
<td>1.5±4.0</td>
</tr>
<tr>
<td>11.4±3.1</td>
<td>11.3±3.2</td>
<td>10.9±4.1</td>
<td>11.5±2.8</td>
</tr>
</tbody>
</table>

nwise indicated. Data in DB baseline columns represent average during weeks 0–104, whereas data in PT baseline columns represent average during weeks 0–52.
P+MTX→MTX, and 70.8% vs 49.0% (X→MTX).

Total population

Achieving SDAI, Boolean and DAS28 calculated throughout both the DB and the end of the DB period (week 52), were significantly higher in the CZP compared with the PBO+MTX→MTX group. Clinical remission observed for the CZP increased during the first 16 weeks of the rate stabilised from week 68 (week 16 h week 104). The remission rates of the up during the PT period were similar to change in clinical remission observed on the end of DB to the PT period. Of these, 74 patients (68.5%) completed the 1-year PT period with MTX therapy (figure 4A). Rates of radiographic non-progression (mTSS change from baseline ≤0.5) was compared using Fisher’s exact test. CZP, certolizumab pegol; LOCF, ward; MTX, methotrexate; PBO, placebo.

Impact of CZP discontinuation in the CZP+MTX→MTX group

The impact of CZP discontinuation was assessed on patients who entered the PT period (PT population) from the CZP+MTX group (n=108). Of these, 74 patients (68.5%) completed the 1-year PT period with MTX therapy (figure 4A). Rates of radiographic non-progression (mTSS change from baseline ≤0.5) was compared using Fisher’s exact test. CZP, certolizumab pegol; LOCF, ward; MTX, methotrexate; PBO, placebo.

to 104 (from 79.6% to 55.6%, 61.1% respectively; figure 4C).

Safety

Study drug exposure during both the total study period and the PT period was higher for the CZP+MTX→MTX group (total: 223.6 patient-years (PY), PT: 87.7 PY) compared with the PBO+MTX→MTX group (total: 179.4 PY, PT: 63.4 PY; table 2). This difference could be attributed to the higher withdrawal rate in the PBO+MTX→MTX group. Overall, no clinically relevant difference was observed in the total incidence of AEs between the CZP+MTX→MTX group and the PBO+MTX→MTX group through week 104 (154 patients (96.9%) vs 150 patients (95.5%)), or SAEs (17 patients (10.7%) vs 18 patients (11.5%)). Incidence rates of some types of AEs including infections and infestations, pneumonia and hepatic disorders were higher during the DB period (weeks 0–52) compared with the PT period (weeks 52–104); however, this increase was observed for both the CZP+MTX→MTX and the PBO+MTX→MTX group (table 2 and see online supplementary table S2).

DISCUSSION

Biological DMARDs are considered second-line therapies for patients who cannot achieve treatment targets using conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) in the management of RA. However, it has been reported that the inhibitory effect of bDMARDs on joint damage is superior to that of csDMARDs, including MTX. Although there is some evidence of bone erosion repair following treatment with bDMARDs, joint destruction in patients with RA is generally considered to be irreversible. Consequently, prevention of significant joint damage is crucial to avoid permanent functional disability, supporting early treatment with bDMARDs.

Concerns have been raised that initiating aggressive treatment with a bDMARD may be excessive for some patients and so identifying patients who would particularly benefit from initial aggressive treatment is critical when considering it. The feasibility of bDMARD withdrawal after achieving a therapeutic target is also of importance from both safety and economical points of view. If these issues are overcome, there is the possibility of a clinical approach where RA therapy is initiated with a bDMARD in the early stage of disease, leading to improved outcomes that can be maintained even after withdrawal of the initial aggressive treatment.

C-OPERA was designed to assess the clinical benefit of CZP treatment concomitant with MTX as first-line therapy for early RA, particularly for patients who were considered to require aggressive treatment. Patients who had poor prognostic factors, including a high titre of anticyclic citrullinated peptide antibody in addition to either rheumatoid factor positivity or bone erosions, were eligible to enter the study. C-OPERA was a study composed of two periods. The results from the first year of the study demonstrated the clinical benefit of adding CZP to MTX therapy (DAS28(ESR) remission and radiographic non-progression was achieved in more than 50% and 80% of patients, respectively), suggesting that the introduction of CZP at a very early stage led to substantial therapeutic effects, despite poor prognosis. In this report, we assessed whether the clinical benefit of initial 1-year CZP+MTX treatment was observed after stopping CZP and continuing with MTX therapy for 1 year.
The PT period reported here, was that the initial 1 year of treatment with discontinuing CZP therapy when the optimised. Radiographic progression, extrapolation, remained lower in the CZP group compared with the PBO+MTX group. Extrapolation, patient withdrawal can on of mTSS change from baseline. To were repeated using LOCF imputation, of CZP co-administration. The rate of progression observed in the CZP population during the PT period was during the DB period in the same population joint destruction may be prevented on of CZP in patients who responded atment with CZP+MTX. These data, lower rate of RRP in the CZP compared with the PBO+MTX→MTX group. After CZP discontinuation, approximately 25% of the patients flared; however, they showed rapid response to CZP re-treatment, with recovery to pre-flare disease activity levels. Although joint destruction was consistently prevented in the PT population following CZP withdrawal, clinical remission was sometimes lost. Discrepancies in clinical and radiographic efficacy have been reported for adalimumab (ADA); similar differences in the clinical and radiographic efficacies of CZP that continue following treatment discontinuation could be responsible for the results observed here. A decrease in remission rate was mainly observed during the first 16 weeks after CZP re-treatment.
Clinical and epidemiological research

Table 2 Summary of treatment-emergent adverse events (TEAE)

<table>
<thead>
<tr>
<th>Clinical and epidemiological research</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-OPERA suggest that the condition of</td>
</tr>
<tr>
<td>HIT HARD) is needed to identify the</td>
</tr>
<tr>
<td>appropriate</td>
</tr>
<tr>
<td>whether this approach has significance</td>
</tr>
<tr>
<td>the approach currently recommended</td>
</tr>
<tr>
<td>While, The High Induction Therapy with</td>
</tr>
<tr>
<td>this particularly benefited patients</td>
</tr>
</tbody>
</table>
| the ADA+MTX group compared.18 Differences in the results of these C-OPERA suggest that the condition of anc’ regime may be important, needed to identify the appropriate required to achieve continued disease P withdrawal, and to identify patients which particularly benefit from first-line moreover, additional analyses are also either this approach has significant clinic s failing to respond to MTX therapy the approach currently recommended ex.19 similar rates of SAEs for both the CZP +MTX→MTX groups over the 2 years of the C-OPERA study, indicating that there are no major safety concerns when adding CZP to optimised MTX therapy. Incidences of AEs and SAEs during the PT period were lower compared with the initial DB period in both groups. One reason for this may be ‘survival bias’, where patients discontinued the study because of an intolerance to the study drugs (CZP and/or MTX) in the first period, resulting in a lower AE rate in the second.20 This study has several limitations. In clinical practice, only patients failing to respond to MTX would receive CZP therapy, and so it is not known how this approach compares with initial CZP therapy. No patients received CZP for a full 2 years or were treated with a reduced dose of CZP so it was not possible to compare these treatment regimens with CZP discontinuation. CZP withdrawal had not been optimised; therefore, there is the potential for further investigation regarding the appropriate treatment targets and the timing of CZP withdrawal in different patient populations. There were differences between the study design of C-OPERA and current RA treatment recommendations. For example, in clinical practice, treatment recommendations for patients with poor prognostic factors include using additional DMARDs in addition to MTX,7,21 which was prohibited in C-OPERA. C-OPERA was not designed as an intercontinental global study; thus, it is not known whether these results are generalisable to ethnicities other than Japanese. In particular, the MTX dose of 16 mg is low compared with similar RA studies from the European Union and USA (15–17 mg/week).22–24 However, when considering differences in patient body weight and MTX metabolism,25 a lower dose of MTX in this study may correspond to the doses used in those previous studies. Finally, as non-responding patients were eligible to receive rescue treatment from 24 weeks onwards, we cannot exclude the possibility that a proportion of the 70 PBO+MTX patients switching to rescue therapy in the first year may have achieved clinical response if treated for a longer period of time.4

<table>
<thead>
<tr>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>542.0</td>
<td>286.1</td>
<td>442.4</td>
<td>548.2</td>
<td>250.7</td>
<td>444.3</td>
</tr>
<tr>
<td>13 (8.2)</td>
<td>4 (3.7)</td>
<td>17 (10.7)</td>
<td>14 (8.9)</td>
<td>4 (5.6)</td>
<td>18 (11.5)</td>
</tr>
<tr>
<td>11.0</td>
<td>6.8</td>
<td>9.4</td>
<td>12.9</td>
<td>6.3</td>
<td>10.6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>97 (61.0)</td>
<td>45 (41.7)</td>
<td>114 (71.7)</td>
<td>87 (55.4)</td>
<td>30 (42.3)</td>
<td>93 (59.2)</td>
</tr>
<tr>
<td>5 (3.1)</td>
<td>0</td>
<td>5 (3.1)</td>
<td>7 (4.5)</td>
<td>1 (1.4)</td>
<td>8 (5.1)</td>
</tr>
<tr>
<td>7 (4.4)</td>
<td>1 (0.9)</td>
<td>8 (5.0)</td>
<td>8 (5.1)</td>
<td>2 (2.8)</td>
<td>10 (6.4)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 (3.1)</td>
<td>2 (1.9)</td>
<td>7 (4.4)</td>
<td>1 (0.6)</td>
<td>0</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>1 (0.6)†</td>
<td>1 (0.9)‡</td>
<td>2 (1.3)‡</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>68 (42.8)</td>
<td>12 (11.1)</td>
<td>73 (45.9)</td>
<td>69 (43.9)</td>
<td>9 (12.7)</td>
<td>73 (46.5)</td>
</tr>
</tbody>
</table>

ent-years, at least one TEAE within System Organ Class/Preferred Term.

rcm: alanine aminotransferase increased, aspartate aminotransferase increased, γ-glutamyltransferase increased, hepatic function abnormal, hepatic sis, hyperbilirubinaemia, liver disorder, liver function test abnormal; MedDRA V.14.1. umab pegd; MTX, methotrexate; PBO, placebo.
Overall, these results suggest that patients with early RA would benefit from the addition of CZP to MTX therapy during the early stages of disease, particularly with respect to the prevention of joint destruction. Although this aggressive therapeutic strategy would not be recommended for all patients, it may be a potential option for those patients with a high risk for joint destruction. How to identify these patients requires further investigation.

REFERENCES

Clinical and epidemiological research

school of Medicine, Sapporo, Japan
I Medicine, University of Occupational and
ty, Tokyo, Japan
ol and Faculty of Medicine, Nagoya, Japan
s, Tokyo, Japan

cal Epidemiology, The University of Toyama

n

Clinical Immunology, Chichi Medical University,

pan
Leiden University Medical Centre, Leiden, The
Tokyo Medical and Dental University, Tokyo, Japan

ors acknowledge Lilia Marinova MD, PhD, UCB

involved in the C-OPERA study, reviewed and

UCB Pharma funded this study and manuscript.

taken part in speakers’ bureaus for Astellas,

bished-Tanabe. KY has received consultancy fees from

subashi-Tanabe, Pfizer, Roche and UCB Pharma; and

Abbott, Eisai, Mitsubishi-Tanabe, Pfizer, Santen
d consultancy fees from AstraZeneca, Asahi Kasei,
Novartis; research grants from Abbott, Astellas, BMS,
nssen, Mitsubishi-Tanabe, Nippon Shinyaku, Otsuka,
kedo and Teijin; and has taken part in speakers’
i, Eisai, Janssen, Mitsubishi-Tanabe, Pfizer and
s received consultancy fees from Abbott, Astellas,
tusahi-Tanabe, Pfizer, Takeda and UCB Pharma;
from Abbott, Astellas, BMS, Chugai, Eisai, Janssen,
a and UCB Pharma. NH has received research grants
eda, Chugai, Eisai, Janssen, Kaken
d has taken part in speakers’ bureaus for Abbott,
ssen, Kaken, Mitsubishi-Tanabe, Otsuka, Pfizer,
has received research grants from Astellas, Abbvie,
itsubishi-Tanabe, MSD; has received consultancy
Kasei, Astellas, AstraZeneca, Chugai,
K, Janssen, Mitsubishi-Tanabe, MSD, Pfizer, MF;
and has taken part in speakers’ bureaus for
tellus, AstraZeneca, Chugai, Daiichi-Sankyo, Eisai, Eli
anabe, MSD, Pfizer, Quintiles, Takeda and UCB
acy fees from UCB Pharma. AW has received

research grants from Daiichi-Sankyo, Daippon-Sumitomo, Kyorin, Meiji Seika;
Shionogi, Taiho, Taisho and Toyama Chemical; and has taken part in speakers’
bureaus for Daiichi-Sankyo, Daippon-Sumitomo, GSK, Mitsubishi-Tanabe, MSD,
Pfizer, Shionogi and Taisho-Toyama. HO has received consultancy fees from Astellas and
UCB Pharma. SY has received research grant from BMS and taken part in
speakers’ bureaus for Abbvie, Astellas, Chugai, Eisai, Pfizer, Mitsubishi-Tanabe and
Takeda. YY has no competing interests to disclose. YK has received speakers’ bureau
from Astellas, Chugai and Ono. TM has received speaker honoraria from Pfizer
Janssen Pharmaceutical Co. and Astellas Pharma; and research grants from
Quintiles Transnational Japan K.K, Janssen Pharmaceutical Co., Takeda Chemical
Industries, Daiichi Sankyo Co., Astellas Pharma, Eli Lilly Japan K.K., MSD Co.,
Nippon Kayaku Co., Parexel International, Pfizer Japan and Bristol-Myers Squibb. MI
has received payment for lectures from Astellas, Chugai, Ono and Tanabe-Mitsubishi;
has received research grants from Pfizer and a royalty fee from
Chugai. TS is an employee of UCB Pharma; TO is an employee of Astellas. DDDT
has received consultancy fees from Abbvie, Amgen, AstraZeneca, Augurex, BMS,
Boehringer Ingelheim, Celgene, Centocor, Chugai, Covagen, Daiichi-Sankyo, Eli-Lilly,
Galapagos, GSK, Janssen Biologics, Merck, Novartis, Novo Nordisk, Otsuka, Pfizer,
Roche, Sanofi-Aventis, Schering-Plough, UCB Pharma and Vertex; and is the Director
of Imaging Rheumatology bv. NM has received research grants from Abbott,
Astellas, Chugai, Eisai, Mitsubishi-Tanabe, Pfizer and Takeda. TK has received
consultancy fees from Abbvie, Astellas, BMS, Chugai, Daiichi-Sankyo, Eisai,
Mitsubishi-Tanabe, Pfizer, Santen, Taisho-Toyama, Takeda, Teijin and UCB Pharma,
and has taken part in speakers’ bureaus for Abbott, Astellas, BMS, Chugai,
Daiichi-Sankyo, Eisai, Mitsubishi-Tanabe, Pfizer, Santen, Taisho-Toyama, Takeda,
Teijin and UCB Pharma.

Ethics approval
This study was conducted after review and approval by the institutional review board designated by each study site after consideration of the
ethical, scientific and medical justification for the conduct of the study.

Provenance and peer review
Not commissioned; externally peer reviewed.

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Clinical benefit of 1-year certolizumab pegol (CZP) add-on therapy to methotrexate treatment in patients with early rheumatoid arthritis was observed following CZP discontinuation: 2-year results of the C-OPERA study, a phase III randomised trial

Tatsuya Atsumi, Yoshiya Tanaka, Kazuhiko Yamamoto, Tsutomu Takeuchi, Hisashi Yamanaka, Naoki Ishiguro, Katsumi Eguchi, Akira Watanabe, Hideki Origasa, Shinsuke Yasuda, Yuji Yamanishi, Yasuhiko Kita, Tsukasa Matsubara, Masahiro Iwamoto, Toshiharu Shoji, Osamu Togo, Toshiyuki Okada, Désirée van der Heijde, Nobuyuki Miyasaka and Takao Koike

Ann Rheum Dis 2017 76: 1348-1356 originally published online February 2, 2017
doi: 10.1136/annrheumdis-2016-210246

Updated information and services can be found at:
http://ard.bmj.com/content/76/8/1348

These include:

References
This article cites 27 articles, 11 of which you can access for free at:
http://ard.bmj.com/content/76/8/1348#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (611)

Notes
To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/