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ABSTRACT
Objective A population of synovial inflammatory
dendritic cells (infDCs) has recently been identified in
rheumatoid arthritis (RA) and is thought to be
monocyte-derived. Here, we investigated the role and
source of granulocyte macrophage-colony-stimulating
factor (GM-CSF) in the differentiation of synovial infDC
in RA.
Methods Production of GM-CSF by peripheral blood
(PB) and synovial fluid (SF) CD4+ T cells was assessed
by ELISA and flow cytometry. In vitro CD4+ T-cell
polarisation experiments were performed with T-cell
activating CD2/CD3/CD28-coated beads in the absence
or presence of pro-Th1 or pro-Th17 cytokines. CD1c+
DC and CD16+ macrophage subsets were flow-sorted
and analysed morphologically and functionally (T-cell
stimulatory/polarising capacity).
Results RA-SF CD4+ T cells produced abundant GM-
CSF upon stimulation and significantly more than RA-SF
mononuclear cells depleted of CD4+ T cells. GM-CSF-
producing T cells were significantly increased in RA-SF
compared with non-RA inflammatory arthritis SF, active
RA PB and healthy donor PB. GM-CSF-producing CD4+
T cells were expanded by Th1-promoting but not Th17-
promoting conditions. Following coculture with RA-SF
CD4+ T cells, but not healthy donor PB CD4+ T cells,
a subpopulation of monocytes differentiated into CD1c+
infDC; a process dependent on GM-CSF. These infDC
displayed potent alloproliferative capacity and enhanced
GM-CSF, interleukin-17 and interferon-γ production by
CD4+ T cells. InfDC with an identical phenotype to in
vitro generated cells were significantly enriched in RA-SF
compared with non-RA-SF/tissue/PB.
Conclusions We demonstrate a therapeutically
tractable feedback loop of GM-CSF secreted by RA
synovial CD4+ T cells promoting the differentiation of
infDC with potent capacity to induce GM-CSF-producing
CD4+ T cells.

INTRODUCTION
Rheumatoid arthritis (RA) is a chronic disease char-
acterised primarily by synovial inflammation. The
presence of autoreactive T cells and antibodies
recognising citrullinated self-peptides in the periph-
eral blood (PB) of patients with RA supports the
notion that the disease is initiated by an antigen-
specific T-cell response.1–5 As efficient activators of
antigen-specific T-cell responses, dendritic cells

(DCs) have been implicated in disease
pathogenesis.6–10

In humans, two populations of steady-state
myeloid DCs exist in blood and tissues subdivided
according to differential expression of CD141 and
CD1c.11 12 Analogous populations exist in mice
identified by the markers CD103 and CD11b.12

These derive from sequentially restricted precursors
in the bone marrow that form a distinct branch
from the monocyte lineage.13–15 A third population
of monocyte-derived inflammatory DCs (infDCs)
has been shown to develop in response to a range of
insults including leishmaniasis,16 influenza,17 tryp-
anosomiasis,18 listeriosis19 and pulmonary aspergil-
losis.20 A human infDC equivalent was recently
identified in RA synovial fluid (SF)21 that was indis-
tinguishable from steady-state CD1c+ DCs by
surface phenotype but with a transcription profile
closer to that of monocyte-derived DCs (moDCs).
In contrast to inflammatory macrophages, this popu-
lation efficiently promoted Th17 responses through
production of interleukin (IL)-23.
The differentiation requirements for infDCs have

not been established but there are two lines of evi-
dence to suggest a critical role for granulocyte-
macrophage colony-stimulating factor (GM-CSF).
First, GM-CSF is an essential growth factor for in
vitro and in vivo DC development.22 Second,
GM-CSF is found at high concentrations at sites of
inflammation in several diseases including asthma,23

multiple sclerosis24 and RA.25 Therapeutic neutralis-
ing antibodies targeting GM-CSF have shown
promise in phase II clinical trials in RA.26

CD4+ T cells are a recognised source of
GM-CSF. In experimental autoimmune encephalo-
myelitis (EAE, a murine model of multiple sclerosis)
the production of GM-CSF by CD4+ T cells is
necessary and sufficient to render them encephalito-
genic.27 28 GM-CSF is thought to exert its patho-
genic effect in this model by enhancing IL-23
production by CNS-infiltrating CD11c+ DCs and
thereby stabilising the Th17 population.27 In RA
synovial tissue CD4+ Tcells colocalise with CD1c+
DCs29 suggesting a potential symbiotic interaction
which promotes inflammation.
The contribution of CD4+ T cell-derived

GM-CSF to murine EAE has created interest in the
factors that modulate its production. While
polarised Th1, Th2 and Th17 CD4+ T cells can all
produce GM-CSF, it has been designated
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predominantly a Th17 cytokine in mice28 as (1) its production
is inhibited by the Th1-associated cytokines interferon (IFN)-γ
and IL-12; (2) its production is enhanced in Th17 cells by IL-1β
and IL-2327 28 and (3) it is under the control of the Th17
master transcription factor RORγt28 (although this is dis-
puted27). The factors that control GM-CSF production by
CD4+ T cells in humans are not fully established.

In this study, we investigated the cellular source of GM-CSF
in RA-SF and the contribution of RA-SF T-cell-derived GM-CSF
in infDC differentiation from PB monocytes. Our data demon-
strate that CD4+ T cells are a major source of GM-CSF in RA
and that cytokines known to be present in the RA synovium
prime them to produce it. Furthermore, we demonstrate that by
producing GM-CSF, CD4+ T cells are capable of inducing an
infDC phenotype in monocytes.

MATERIALS AND METHODS
Patient samples
SF was obtained during therapeutic aspirations. Osteoarthritis
(OA) and healthy synovial tissue were obtained from ortho-
paedic procedures. RA synovial tissue was obtained by
ultrasound-guided biopsy. Healthy donor blood was obtained
from volunteers. Patients with active RA (defined as a disease
activity score (DAS28) >5.1) were recruited from a biological
initiation clinic. OA and active RA synovial fibroblasts were cul-
tured from synovial tissue obtained by arthroscopy and used
between passage 4–8.30 Ethical approval was obtained for all
samples (Sunderland Research Ethics committee).

Cell isolation
SF mononuclear cells were obtained by treating samples with
10 U/mL hyaluronidase (Hyalase) and 1 U/mL heparin for
30 min before performing density centrifugation (Lymphoprep,
Greiner BioOne). Synovial tissue samples were cut into small
fragments and digested overnight in 256 U/mL collagenase
type-IV (Worthington) before passing through a 70 μm filter.
Macrophage/DC subsets (CD1c+ and CD16+) were separated
by flow-assisted cell-sorting (FACS Fusion, Becton-Dickinson).
Whole CD4+ T cells were isolated by magnetic bead cell
sorting (CD4+ Microbeads, Miltenyi Biotec) with >95%
purity. Naïve CD4+ T cells were isolated by magnetic bead cell
sorting using the EasySep Human Naïve CD4+ T-cell enrich-
ment kit (StemCell) with >95% purity.

Cell surface markers
Single cell suspensions were incubated in a buffer solution of
phosphate-buffered saline+3% fetal calf serum (Lonza)+0.2%
EDTA+0.1% sodium azide. Cells were incubated with anti-
bodies and 4% human IgG for surface staining.

Cytokine production
Synovial mononuclear cellular fractions at a concentration of
106/mL were stimulated with 0.1 μg/mL lipopolysaccharide
(LPS) or 10 ng/mL phorbol 12-myristate 13-acetate (PMA) and
1 μg/mL ionomycin (all from Sigma). Synovial fibroblasts were
cultured to confluency (5×104/mL), treated for 3 h with IL-1β
(10 ng/mL, Peprotech), washed and cultured for another 24 h.
GM-CSF levels in supernatants were determined by BD
Biosciences OptEIA ELISA according to the manufacturer’s
instructions. For intracellular cytokine staining, CD4+ T cells
were stimulated with PMA and ionomycin for 5 h with 10 μg/
mL Brefeldin A (Sigma) added after 1 h. Cells were then har-
vested, fixed and permeabilised and stained using the FoxP3/
transcription factor staining buffer set (eBioscience) according

to the manufacturer’s instructions. Cells were preincubated with
2% mouse and rat serum (both Sigma) prior to antibody
labelling.

Flow cytometry
T helper cell polarisation
Naïve or unfractionated CD4+ T cells were cultured in a
96-well plate at 5×105/mL in Iscove’s modified Dulbecco’s
medium supplemented with 10% Serum Replacement (both
Life Technologies; see online supplementary data). Cells were
stimulated with anti-CD2/CD3/CD28-coated beads (Miltenyi
Biotec; prepared according to the manufacturer’s instructions)
at 1 bead:10 cells ratio. All cytokines were added at a concentra-
tion of 20 ng/mL on days 0 and 3. Cytokines were purchased
from Immunotools (IL-12 and IL-13), Cambridge Bioscience
(IL-15, IL-18) and Peprotech (IL-1β, IL-6, transforming growth
factor-β (TGFβ)). Human recombinant tumor necrosis factor
(TNF)-α was kindly provided by Knoll AG (Ludwigshafen,
Germany). Cells were inspected daily and split as required. On
day 6, cells were rested in IL-2 (10 U/mL) for a further 4 days
before being prepared for intracellular cytokine labelling as
described above.

Morphological analysis
Cytospin slides were made of sorted cellular fractions.

Statistical analysis
All statistical analyses were performed with GraphPad Prism
software. Analysis of the difference between two groups was
assessed by paired t test, while comparisons between three or
more groups were assessed using a one-way repeated measures
analysis of variance with post-hoc analysis using Tukey’s mul-
tiple comparison test.

RESULTS
CD4+ T cells are a major source of GM-CSF in RA and are
primed to produce it
To define cellular source(s) of GM-CSF in RA-SF, we separated
RA-SF cells into three fractions: whole SF mononuclear cells, SF
CD4+ T cells and SF mononuclear cells depleted of CD4+
T cells. Each fraction was stimulated with either LPS or PMA/
ionomycin to ensure activation of the myeloid and lymphoid
compartment (figure 1A). LPS stimulation did not result in
detectable GM-CSF production from any fraction. We also
found that CD4+ T cells alone were able to produce signifi-
cantly more GM-CSF than CD4+ depleted SF mononuclear
cells and whole SF mononuclear cells.

Synovial fibroblasts have been identified as a significant source
of GM-CSF.31 We assessed their contribution by stimulating cul-
tured synovial fibroblasts with IL-1β and TNFα, two cytokines
produced by synovial macrophages and thought to be respon-
sible for the activated phenotype of RA synovial fibroblasts.32

Whereas levels of GM-CSF were undetectable following stimu-
lation with up to 50 ng/mL TNFα (data not shown), IL-1β was
an effective stimulus for GM-CSF production (figure 1B). Some
but not all OA and RA synovial fibroblasts produced detectable
levels of GM-CSF, although this was consistently <250 ng/mL.

We next examined whether RA synovial CD4+ T cells are
‘primed’ to produce GM-CSF or whether this is a property of
CD4+ T cells in general by comparing them with PB CD4+
T cells. As with other cytokines (with the exception of IL-2),33

the majority of GM-CSF+ T cells in PB were CD45RO+
memory T cells (figure 1C). We compared the proportion of
GM-CSF+ CD4+ T cells in the PB of healthy donors, patients
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Figure 1 CD4+ T cells are the main source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in rheumatoid arthritis (RA) and are
primed to produce it. (A) RA synovial fluid (SF) mononuclear cell (MC) fractions (whole SFMC, SF CD4+ T cells and SFMC depleted of CD4+ T cells;
106 cells/mL) were left unstimulated or were stimulated with phorbol 12-myristate 13-acetate (PMA; 10 ng/mL) and ionomycin (1 μg/mL) or
lipopolysaccharide (LPS; 100 ng/mL) for 12 h. GM-CSF levels in supernatants were determined by ELISA. Data are represented as mean±SEM of six
independent donors. Results below the limit of detection of the ELISA (4.7 pg/mL) are indicated by ‘<d’. Data were analysed by a two-way ANOVA
followed by Bonferroni post-test analysis. (B) GM-CSF levels in the supernatant of confluent synovial fibroblast cultures (5×104 cells/mL) stimulated
with interleukin-1β for 24 h were measured by ELISA. (C and D) Peripheral blood (PB) and SF CD4+ T cells (106 cells/mL) were stimulated with PMA/
ionomycin in the presence of brefeldin A for 5 h before surface staining with anti-CD45RO antibody and analysis of GM-CSF expression by
intracellular cytokine staining followed by flow cytometry. Representative flow data are shown in (C) and data of four to five donors per group are
presented in (D). Data were analysed by one-way ANOVA with post hoc analysis by Tukey’s multiple comparison testing. Horizontal bars represent
mean values. (E) PB and RA-SF CD4+ T cells (106 cells/mL) were stimulated with PMA/ionomycin overnight and GM-CSF levels in supernatants were
analysed by ELISA. Horizontal bars represent mean values. Statistical analysis was performed by a two-tailed t test. *p<0.05, **p<0.01 or
***p<0.001.
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with active RA (defined as DAS28 >5.1), non-RA inflammatory
SF and RA-SF (figure 1D) and found that RA-SF contained a sig-
nificantly higher proportion of GM-CSF+ Tcells. This was veri-
fied by analysing supernatants of stimulated PB and RA-SF
CD4+ T cells by ELISA (figure 1E; right panel).

Human CD4+ T cells optimally produce GM-CSF under high
stimulus, Th1 conditions
We next sought to identify the cytokines present in the RA syno-
vium that may enhance GM-CSF production by T cells by

performing in vitro polarisation experiments. In the context of
the description of GM-CSF as a ‘Th17 cytokine’ in mice,28 we
first assessed the effect of Th17-promoting cytokines (IL-1β,
TGFβ and IL-23) on GM-CSF induction in total CD4+ T cells.
IL-23 alone did not affect the proportion of GM-CSF+ T cells
(data not shown) and in combination Th17-promoting cytokines
resulted in a lower proportion of GM-CSF+ T cells (figure 2A).
We next investigated how T-cell stimulation strength modulates
GM-CSF production. We have previously demonstrated that
low stimulation strength supports Th17 responses34 and as

Figure 2 Human CD4+ T cells optimally produce granulocyte macrophage-colony-stimulating factor (GM-CSF) under high stimulus Th1 conditions.
(A) Peripheral blood (PB) CD4+ T cells (5×105 cells/mL) from healthy donors were stimulated with anti-CD2/CD3/CD28-coated beads without or with
Th17 polarising cytokines (interleukin (IL)-1β, transforming growth factor-β (TGF-β) and IL-23, all at 20 ng/mL) at a ratio of 1:10 beads:T cells for six
days before being rested in IL-2 (10 U/mL) for a further 4 days. Cytokine production was analysed by flow cytometry. Results of four independent
experiments are shown. Statistical analysis was performed by a paired two-tailed t test. (B) PB CD4+ T cells (5×105 cells/mL) from healthy donors
were stimulated with anti-CD2/CD3/CD28-coated beads at indicated ratios of cells to beads for six days before being rested in IL-2 (10 U/mL) for a
further 4 days. Cytokine production was analysed by flow cytometry. Results of four independent experiments are shown. Statistical analysis was
performed by a paired two-tailed t test. (C and D) Naïve healthy donor PB CD4+ T cells (5×105 cells/mL) were stimulated with anti-CD2/CD3/
CD28-coated beads in the presence of the indicated cytokines (all at a concentration of 20 ng/mL, added day 0 and refreshed on day 3) and on day
6 the cells were rested in IL-2 (10 U/mL) for a further 4 days before analysis of cytokine production by intracellular flow cytometry. Representative
flow data are shown in (C) and data of seven independent donors per group are presented in (D) with the results analysed by one-way followed by
post hoc analysis by Tukey’s multiple comparison testing. *p<0.05, **p<0.01 or ***p<0.001.
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expected found that IL-17 levels increased as stimulatory CD2/
CD3/CD28 bead concentration decreased. In contrast, GM-CSF
production increased at higher bead concentrations (figure 2B).
We next sought to identify the cytokines that support GM-CSF
production with reference to those found in RA using naïve
CD4+ T cells and the same experimental set up. We found that
GM-CSF production was significantly enhanced by IL-12 and
IL-15 (figure 2C, D), but not by Th17-promoting cytokines
(IL-1β, IL-6, TGFβ), IL-13 and TNFα. These findings suggest
that the factors that enhance human GM-CSF production are
different from those for mice. Specifically, GM-CSF production
in human CD4+ T cells is enhanced by a strong T-cell activation
stimulus, Th1 conditions and IL-15.

RA synovial CD4+ T cells promote CD14+ monocytes to
differentiate into a CD1c+ population and this effect is
GM-CSF dependent
We next sought to assess the functional significance of this
enhanced GM-CSF production by synovial CD4+ T cells. We
cultured CD4+ T cells isolated from PB, non-RA inflammatory
SF and RA-SF with healthy donor allogeneic CD14+ monocytes
to model mutual activation of these cells when monocytes infil-
trate the joint. After 3 days we determined the fate of the mono-
cytes within the myeloid CD2loCD11c+ fraction (figure 3A).
We found that, in contrast to healthy PB CD4+ T cells, psoriatic
arthritis and in particular RA-SF CD4+ T cells supported the
development of a population of CD1c+ DCs. CD1c is a lipid

Figure 3 Rheumatoid arthritis (RA)
synovial CD4+ T cells promote CD14+
monocytes to differentiate into a CD1c
+ population and this effect in
granulocyte
macrophage-colony-stimulating factor
(GM-CSF) dependent. (A) CD4+ T cells
were isolated from healthy donor
peripheral blood (PB), non-RA
inflammatory arthritis and RA synovial
fluid (SF) and cultured together with
allogeneic healthy donor CD14+
monocytes in a 24-well plate at a ratio
of 1:2 monocytes:T cells (5×105

monocytes:106 T cells/mL) for 3 days.
Cells were harvested and cell surface
marker expression was analysed by
flow cytometry using the gating
strategy indicated (top) with
representative examples of flow data
(bottom). The proportion of
CD16−CD1c+ cells within the
CD2−CD11c+ fraction induced by
different CD4+ T-cell donors was
analysed. Results from four to seven
donors per group are summarised in
(B) with horizontal bars representing
mean values. Data were analysed by
ANOVA before post hoc analysis by
Tukey’s multiple comparison testing.
(C) SF T cells were cocultured with
allogeneic monocytes as above in the
presence of a neutralising antibody to
GM-CSF at 10 μg/mL. Representative
results from two independent repeats
are shown. *p<0.05, **p<0.01 or
***p<0.001.
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antigen presentation molecule used to define a subset of
myeloid DC and more recently shown to be expressed by
infDCs in RA-SF.21 RA CD4+ T cells promoted significantly
higher levels of CD1c+ differentiation than non-RA inflamma-
tory arthritis CD4+ T cells (figure 3B). To assess whether this
effect was GM-CSF dependent, we neutralised GM-CSF using a
blocking antibody and found a significant reduction in the
CD1c+ population (figure 3C).

The CD1c+ cells induced by RA-SF T cells have phenotypic
and functional properties of DCs
Having demonstrated that RA synovial CD4+ T cells promoted
differentiation of monocytes into a CD1c+ population, we next
sought to assess whether this induced population had DC
characteristics. Using the same gating strategy as above, we per-
formed flow sorting on the CD1c−CD16+ (hereafter ‘CD16+’)
and CD1c+CD16− (hereafter ‘CD1c+’) cells derived from
those culture conditions. The CD16+ population had ruffled
edges and prominent vacuoles consistent with macrophage
morphology, whereas the CD1c+ population developed fine
dendritic processes consistent with DC morphology (figure 4A).
We compared the expression of surface markers that have previ-
ously been identified on RA CD1c+ DCs.21 29 We found that
the expression of CD14, CD11b, CD206 and Signal-regulatory
protein alpha (SIRPα) was concordant between RA-SF and syn-
ovial tissue CD1c+ DCs and our induced CD1c+ population
(see online supplementary figure S1) but expression of both
FcεRI and Dendritic Cell-Specific Intercellular adhesion mol-
ecule-3-Grabbing Non-integrin (DC-SIGN) was lower. This sug-
gests that our in vitro model cannot fully recapitulate moDC
generation in vivo. In an allogeneic mixed lymphocyte reaction
(MLR) with CD4+ T cells the CD1c+ population induced sig-
nificantly greater proliferation than the CD16+ population
(figure 4B). Finally, we assessed the capacity of the two popula-
tions to promote CD4+ T-cell polarisation. Both promoted
cytokine production by T cells and significantly higher propor-
tions of IFNγ+ and IL-17+ cells were induced in MLRs with
the CD1c+ population (figure 4C, top). As expanded T-cell
numbers were higher in the CD1c+ cultures the absolute
numbers of IFNγ+, IL-17+ and GM-CSF+ cells were also
higher (figure 4C bottom). These data support the idea that the
induced CD1c+ population possesses infDC characteristics.

RA-SF is enriched for a population of CD1c+ cells within the
macrophage/DC fraction
We have demonstrated that RA-SF CD4+ T cells induce the dif-
ferentiation of a population of CD1c+ cells with infDC
characteristics in a GM-CSF-dependent manner. Finally, we
sought to correlate this with the situation in vivo: specifically
whether a higher proportion of CD1c+ cells were found in the
macrophage/DC fraction of SF cells in RA than in tissue from
healthy controls and non-RA inflammatory arthritis. We used a
lineage cocktail with CD3, CD19, CD20 and CD56 to exclude
T cells, B cells and natural killer cells and hence identified the
macrophage/DC fraction as DAPI−CD45+lin−HLA-DR
+CD11c+ (gating figure 5A; representative data figure 5B; sum-
marised figure 5C). In agreement with the previous work of
Moret et al6 and consistent with our in vitro finding that RA-SF
CD4+ T cells promote differentiation of monocytes into infDC-
expressing CD1c, we found that a significantly higher propor-
tion of myeloid cells in RA-SF was CD1c+ DC than in the
other conditions examined. However, we did not find a signifi-
cant enrichment of CD1c+ DC in RA synovial tissue compared
with healthy and OA tissue. Lebre et al29 have previously

demonstrated no significant difference in CD1c+ DC in RA and
inflammatory OA. A possible explanation for our finding could
be that tissue DC migrates into SF in inflammation.

DISCUSSION
We demonstrate that synovial CD4+ T cells are a major source
of GM-CSF in RA. We show that GM-CSF production by
human CD4+ T cells is enhanced by the Th1-polarising cyto-
kine IL-12 and the T-cell survival factor IL-15 and confirms the
recent findings by Noster et al35 This correlates with the cyto-
kine environment CD4+ T cells are likely to encounter in vivo
and may explain our finding that ex vivo RA synovial T cells
produce more GM-CSF than RA or healthy control PB CD4+
T cells. Levels of IL-12 have been shown to be increased in
serum and SF of patients with RA compared with osteoarthritis
and correlate with disease activity score.36 IL-15 can be found
in RA-SF but not in OA SF37 and levels also correlate with
disease activity.38 Both IL-12 and IL-15 have been shown to be
produced by synovial CD1c+ DC by immunohistochemistry.29

Lymphocytes are closely associated with CD1c+ cells in RA syn-
ovial tissue29 and this suggests a mechanism by which produc-
tion of IL-12 and IL-15 by these cells contributes to disease
through the development of a positive feedback loop character-
istic of chronic inflammatory state such as RA.

These findings suggest that the regulation of GM-CSF pro-
duction by CD4+ T cells differs between mice (where it has
been shown to be regulated by RORγt and as such designated a
Th17 cytokine28) and humans. Our finding that IL-12 enhances
GM-CSF production accords with a recent study showing that
GM-CSF production increases under Th1 conditions and that
transcription of GM-CSF and IL-17 is reciprocally regulated
with a high STAT5:STAT3 ratio supporting GM-CSF production
and suppressing IL-17 and vice versa.35 In juvenile idiopathic
arthritis, another inflammatory arthritis, the majority of
GM-CSF-producing synovial CD4+ T cells express CD161, a
marker for ex-Th17 cells.39 40 It has been shown that human
Th17 cells develop combined IL-17/IFNγ/GM-CSF-producing
capacity under the influence of IL-12 and this may be respon-
sible for their pathogenicity.

Based on our findings, we propose that human CD4+
T-cell-derived GM-CSF can support differentiation of mono-
cytes in to infDC-expressing CD1c. However, while GM-CSF is
required in this model, other factors are also likely to contrib-
ute. It has previously been shown that T helper cells support
monocyte to DC differentiation through cell-to-cell contact and
production of TNFα as well as GM-CSF.41 In mice there has
been conflicting evidence for the role of GM-CSF in murine
infDC differentiation. Greter et al22 demonstrated that in
csf2r−/− mice, infDC (defined as MHC-II+CD11cintCD11b
+Ly6c+) developed normally in response to influenza and
Streptococcus pneumoniae while Campbell et al42 have shown
that infDCs defined by the same surface markers are absent
from the synovial tissue and lymph nodes of GM-CSF−/− mice
after induction of acute monoarticular arthritis. These data
suggest that the requirement for GM-CSF for infDC differenti-
ation differs between murine models and other factors may be
substituted. For example, IFNγ is required for infDC differenti-
ation in the context of Toxoplasma gondii infection.43

We find an enriched CD1c+ population in RA-SF but we
cannot conclude that they are monocyte-derived infDC as they
cannot be distinguished from steady-state DC by surface marker
analysis alone. Despite this there is evidence that infDC will
comprise the majority of this population. In murine acute
inflammatory arthritis, 85% of the CD11c+ population in
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synovial tissue have been previously shown to be infDC.42

In humans, the gene signature of RA-SF CD1c+ DCs is closest
to that of moDC, suggesting that infDCs predominate.21

The specific contribution of human infDCs to RA pathogen-
esis is uncertain. Murine infDCs are effective at inducing T-cell
proliferation and producing inflammatory cytokines such as
IL-12, IL-23 and TNFα17 19 44 but poor at migrating to draining
lymph nodes.19 45 Similarly, in our study, synovial CD4+
T-cell-induced infDCs display potent T-cell stimulatory ability
and enhance cytokine production, but it is not clear whether

they have the capacity to migrate to draining lymph nodes.
Analogous to murine infDC the role of human infDC in RA
may be to perpetuate T-cell responses within the synovium, a
finding supported by the demonstration of mature DC within
lymphocytic infiltrates in synovial tissue.46

In summary, we have demonstrated a mechanism by which RA
synovial CD4+ Tcells can support infDC differentiation through
production of GM-CSF. This provides both a novel indication of
how GM-CSF may contribute to the maintenance of synovial
inflammation and a model for examining RA infDC

Figure 4 The CD1c+ population induced by rheumatoid arthritis synovial fluid (SF) T cells have phenotypic and functional properties of dendritic
cells. (A) CD16+CD1c− (‘CD16’) and CD16−CD1c+ (‘CD1c’) fractions were flow-sorted from 3-day cocultures of CD14+ monocytes and allogeneic
SF CD4+ T cells and phenotype assessed by phase-contrast microscopy of cytospin slides. (B) The same flow-sorted fractions were placed in an
allogeneic mixed lymphocyte reaction (MLR; 104 antigen presenting cells/well) in a 96-well plate with CD4+ T cells at a 1:10 ratio for 6 days. T-cell
proliferation was analysed at this point by 3H-thymidine incorporation assay. Results are shown as mean±SEM of four independent donors (CPM =
counts per minute). Data were analysed by a two-tailed t test. (C) CD4+ T cells from the same MLRs were harvested on day 6, counted to provide
an absolute number and cytokine production analysed following restimulation with phorbol 12-myristate 13-acetate/ionomycin (106 cells/mL) by
intracellular cytokine staining and flow cytometry. The percentage cytokine positive cells (top, n=5, top, horizontal lines represent mean values) and
the absolute number of cytokine producing cells (bottom, n=4, results shown as mean±SEM) are shown. Analysis was performed by paired
two-tailed t test. *p<0.05, **p<0.01 or ***p<0.001. IFN, interferon; IL, interleukin.
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development. The development of biological agents targeting
GM-CSF in RA should allow us to validate these findings in vivo.
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