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ABSTRACT
Objective Axial spondyloarthritis (AxSpA) represents a
group of inflammatory axial diseases that share common
clinical and histopathological manifestations. Ankylosing
spondylitis (AS) is the best characterised subset of AxSpA,
and its genetic basis has been extensively investigated.
Given that genome-wide association studies account for
only 25% of AS heritability, the objective of this study
was to discover rare, highly penetrant genetic variants in
AxSpA pathogenesis using a well-characterised,
multigenerational family.
Methods HLA-B*27 genotyping and exome sequencing
was performed on DNA collected from available family
members. Variant frequency was assessed by mining
publically available datasets and using fragment analysis
of unrelated AxSpA cases and unaffected controls. Gene
expression was performed by qPCR, and protein
expression was assessed by western blot analysis and
immunofluorescence microscopy using patient-derived
B-cell lines. Circular dichroism spectroscopy was
performed to assess the impact of discovered variants on
secondary structure.
Results This is the first report identifying two rare
private familial variants in a multigenerational AxSpA
family, an in-frame SEC16A deletion and an out-of-frame
MAMDC4 deletion. Evidence suggests the causative
mechanism for SEC16A appears to be a conformational
change induced by deletion of three highly conserved
amino acids from the intrinsically disordered Sec16A
N-terminus and RNA-mediated decay for MAMDC4.
Conclusions The results suggest that it is the presence
of rare syntenic SEC16A and MAMDC4 deletions that
increases susceptibility to AxSpA in family members who
carry the HLA-B*27 allele.

INTRODUCTION
Spondyloarthritis (SpA) represents a group of inflam-
matory rheumatic diseases whose main clinical
feature is inflammation of the axial spine.1 The focus
of the current study is axial spondyloarthritis
(AxSpA). Although the precise aetiology of SpA
remains unknown, there is mounting evidence of
complex interplay of genetic, environmental and
immunological factors.1 Despite the success of
genome-wide association studies (GWAS) in ankylos-
ing spondylitis (AS), where 25 genetic loci have
reached a level of significance, the genetic contribu-
tion identified only explains 25% of heritability.2–5

This ‘missing heritability’ is attributed, at least in
part, to inherent limitations of GWAS studies, which
primarily assess one type of genetic variation
(ie, single nucleotide polymorphisms) in a case–
control approach, and consequently limits searches to
common variants. Rare variants, which might also
contribute to SpA susceptibility, occur in approxi-
mately 1% of the population, and many are likely to
be specific to ethnic groups, isolates or families.6

That SpA clearly clusters within families, evident
from the occurrence of multiple affected indivi-
duals within a family7 8 and the high recurrence
ratio among siblings,9 is a compelling reason to
investigate the genetics in this setting. The objective
of this study is to discover rare, highly penetrant
pathogenic variants in the pathogenesis of AxSpA
using a large, well-characterised, multigenerational
family and exome sequencing of affected and
unaffected family members.

METHODS
Study population
A large Caucasian multiplex AxSpA family of North
European Ancestry from Newfoundland, Canada,
was identified in a university-based rheumatology
clinic. All available family members were invited to
participate in this study and were systematically
assessed using a standardised protocol by an experi-
enced rheumatologist (PR). The Spondyloarthritis
Consortium of Canada provided clinical and radio-
graphic data, as well as DNA samples for the replica-
tion cohorts.

B-cell lines
Acid citrate dextrose anticoagulated whole blood was
collected from family members. Lymphoblastoid
B-cell lines (BCL) were generated by Epstein–Barr
transformation of peripheral blood B cells as
described previously.10

Nucleic acid extraction
DNA was extracted from EDTA anticoagulated
whole blood using a traditional salting-out method.11

BCL pellets were resuspended in 0.5 mLTRIzol (Life
Technologies) and RNA extracted as per manufac-
turer’s instructions and dissolved in Molecular
Biology grade water. RNA quality and quantity mea-
sures are provided in the online supplementary
methods.
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HLA-B*27 testing
Targeted analysis of the HLA-B locus located on 6p21.3 was
performed using a commercially available kit (LABType SSO
HLA-B locus kit) on a Luminex 100/200 platform as per manu-
facturer’s instructions (One Lambda).

Exome sequencing
Samples were sequenced targeting whole genome exons with an
average coverage of 110× using Illumina HiSeq 2000. The
mapping of reads was aligned using Burrows Wheeler Alignment
V.0.7.10, and the genome analysis toolkit (GATK) V.1.1.28 was
used to call variants against the reference genome. To reduce
false positive calling, 40% support reads was used as a cut-off for
alternative allele. Analysis was carried out to detect rare muta-
tions that segregate only within the affected individuals. Annovar
(April 2014 version) was used for variant annotation.

Fragment analysis
DNA was amplified using specific primers for SEC16A and
MAMDC4 using a standard touchdown reaction on a GeneAmp
PCR System 9700 (Applied Biosystems). PCR primers, PCR
product preparation, capillary electrophoresis and results ana-
lysis are provided in the online supplementary methods.

Linkage analysis
A phased VCF file for the nuclear family (ie, II-1, II-2 and III-2)
was obtained using the GATK software (V.3.3). VCFtools
(V.0.1.12b) were used to calculate pairwise r2, D and D0 for the
genetic variants identified on chromosome 9 from 138 000 000
to 141 000 000 base pairs (GRCh37) of the nuclear subfamily.12

This genomic region includes the two novel deletions in
SEC16A and MAMDC4. Linkage disequilibrium (LD) between
SEC16A and MAMDC4 in the general population was investi-
gated using DistilLD Database13 and GLIDERS.14

Quantitative PCR
Real-time PCR was performed using TaqMan Gene Expression
Assays for SEC16A (Hs_00389570_m1) and GAPDH
(Hs_99999905_m1) from Life Technologies. Samples were tested
as per manufacturer’s instructions and run on a StepOnePlus
(Applied Biosystems). Triplicate samples were analysed using the
comparative threshold cycle (ΔΔCT) method and results normalised
to GAPDH. Statistical analyses were performed by One-way ana-
lysis of variance (ANOVA) and unpaired t test with GraphPad
Prism V.6.04.

Western blot
RIPA lysates were prepared from BCL as described previously.15

Protein determination was performed using a bicinchoninic acid
protein assay kit according to manufacturer’s instructions
(Thermo Scientific). Primary and secondary antibodies as well as

the imaging system used are indicated in the online supplemen-
tary methods. Each sample was expressed as a ratio to tubulin,
then compared with the proband. Statistical analyses were per-
formed using one-way ANOVA and unpaired t test with
GraphPad Prism V.6.04.

Circular dichroism spectroscopy
Detailed information on protein expression and purification
prior to circular dichroism (CD) spectroscopy is indicated in the
online supplementary methods. CD spectra in the far-ultraviolet
range were recorded using a Jasco-810 spectrapolarimeter. The
temperature (25°C) was controlled, and the scanning speed of
the instrument was set at 100 nm/min with normal sensitivity.
A water-jacketed cell (light path=0.5 mm) was used, and spectra
were collected between 190 and 260 nm. Baselines were estab-
lished using the appropriate buffers, and 30 spectra were col-
lected and averaged for each sample.

RESULTS
A well-characterised, multigenerational family with AxSpA was
investigated to identify rare genetic variants (figure 1). All
affected family members carried the HLA-B*27 allele (table 1).
Exome sequencing was subsequently performed on selected
family members with a minimum coverage of 110×. An exome
sequencing analysis pipeline (see online supplementary figure
S1) was used for the detection of genetic variants (see online
supplementary table S1). Subsequent filtering and analysis
revealed a 9 base pair in-frame deletion in SEC16A and a 20
base pair out-of-frame deletion in MAMDC4 (figure 2A), which
segregated with AxSpA in the family (table 1). The chromosome
9 deletions located within exon 3 of SEC16A and exon 5 of
MAMDC4 were confirmed bidirectionally using Sanger
sequencing in family members primarily from generation II
(figure 2B, C) with 7/9 of the clinically diagnosed AxSpA indivi-
duals carrying both deletions in synteny (table 1). In contrast,
both deletions were not in synteny for all unaffected family
members tested in generation II. Closer inspection revealed that
family members diagnosed with AxSpA who carried both dele-
tions in synteny in addition to the HLA-B*27 allele had an
earlier age of symptom onset (20.2±3.14 vs 35.0±0;
p=0.0074; t test with Welch’s correction) compared with family
members diagnosed with AxSpA who carried the HLA-B*27
allele but both deletions not in synteny.

The frequency of each deletion was assessed in publically
available datasets to determine if either deletion represents a
rare genomic event. Mining of the 1000 Genomes, National
Heart, Lung, and Blood Institute, and in-house sequencing data-
sets (7849 total controls) revealed a frequency of 0.4% and
1.2% for the SEC16A and MAMDC4 deletion, respectively. To
determine if either deletion represents a rare variant private to
the study family, the frequency of the SEC16A and MAMDC4
deletion was assessed using fragment analysis in unrelated

Figure 1 A large multigenerational
family with several members clinically
diagnosed with and without axial
spondyloarthritis (AxSpA). Diagnosed
comorbidities such as psoriasis, iritis
and Crohn’s disease are also indicated.
The proband (II-1) in this family is
indicated by an arrowhead.
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Table 1 Clinical information, genotype data (HLA-B27, SEC16A and MAMDC4) of the large, well-characterised, multigenerational family with
numerous individuals clinically diagnosed with and without AxSpA

Family member Diagnosis (Dx) Extra-articular features Age of onset (years) SEC16A/MAMDC4 status HLA-B27 status

I-2 Unaffected – N/A Het/Het Negative
II-1 AxSpA None 26 Het/Het Positive
II-2 Unaffected – N/A Wt/Wt Negative
II-4 AxSpA None 12 Het/Het Positive
II-6 AxSpA Psoriasis 27 Het/Het Positive
II-8 AxSpA Lupus 12 Het/Het Positive
II-9 AxSpA None 30 Het/Het Positive
II-11 Unaffected – N/A Wt/Wt Positive
II-13 AxSpA Iritis 35 Wt/Wt Positive
II-15 Unaffected N/A N/A Wt/Wt Positive
II-17 AxSpA Crohn’s 35 Wt/Wt Positive
II-19 AxSpA Iritis N/A Het/Het Positive
II-21 Unaffected – N/A Wt/Wt Positive
II-23 Unaffected – N/A Wt/Wt Positive
III-2 AxSpA None 14 Het/Het Positive

Detailed information is provided for only the second generation and one individual (III-2) in the third generation.
AxSpA, axial spondyloarthritis; Het, heterozygous for deletion; N/A, information not available; Wt, wild-type (no deletion).

Figure 2 Deletions located within SEC16A and MAMDC4. (A) Full exome sequencing analysis revealed a 9 base pair deletion located within
SEC16A and a 20 base pair deletion located within MAMDC4 that segregated only within affected family members. Both deletions were confirmed
using bidirectional Sanger sequencing of the proband (II-1). (B) The top panel is a representative chromatogram illustrating a portion of the
wild-type sequence of SEC16A exon 3. The lower panel is a representative chromatogram illustrating a portion of SEC16A exon 3 with the in-frame
deletion indicated by an arrow. (C) The top panel is a representative chromatogram illustrating a portion of the wild-type sequence of MAMDC4
exon 5. The lower panel is a representative chromatogram illustrating a portion of MAMDC4 exon 5 with the out-of-frame deletion indicated by an
arrow.
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AxSpA cases and compared with unaffected controls (see online
supplementary table S2). The SEC16A deletion produced a fre-
quency of 0.87% in unrelated AxSpA cases compared with
0.84% in unaffected controls (p=0.925). Similarly, the
MAMDC4 deletion produced a frequency of 1.38% in unrelated
AxSpA cases compared with 1.41% in unaffected controls
(p=0.926). Interestingly, both SEC16A and MAMDC4 deletions
were only detected together in the AxSpA study family and
were not detected together in over 900 unrelated AxSpA cases
or in 1150 unaffected controls.

Linkage analysis, which was performed to estimate the degree
of linkage between the SEC16A and MAMDC4 loci in the family,
revealed that there is very strong LD (r2=1; D0=1) between the
SEC16A and MAMDC4 loci within the nuclear subfamily (see
online supplementary table S3; figure 3A, B). In contrast, SEC16A
and MAMDC4 loci occur in separate LD blocks in the general
population (see online supplementary table S4; figure 3C, D).

Gene and protein expression analysis was performed on select
family members to determine if the SEC16A deletion affects

gene transcription or translation. SEC16A gene expression was
not significantly different in AxSpA individuals carrying the
deletion compared with AxSpA individuals not carrying the
deletion (p=0.2383; figure 4A). Western analysis revealed
that Sec16A protein expression was not significantly different
in AxSpA individuals carrying the deletion compared with
AxSpA individuals not carrying the deletion (p=0.3849;
figure 4B, C).

CD spectroscopy was performed to determine if the SEC16A
deletion affects protein structure. Given that the SEC16A dele-
tion is located in a region that encodes the N-terminus of
Sec16A, a 40 amino acid region around the deletion was ini-
tially selected using PONDR-FIT. CD spectroscopy demon-
strated that the wild-type and deletion peptides have a
disordered secondary structure (figure 5A). In the presence of
trifluoroethanol (TFE), the wild-type peptide adopted a second-
ary structure, whereas the peptide encoding the SEC16A dele-
tion clearly lacked secondary structure. A disordered secondary
structure was also confirmed using CD spectroscopy on the
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Figure 3 Linkage analysis was performed using VCFtools to estimate the degree of linkage between the SEC16A and MAMDC4 loci in the family and the
general population. Analysis revealed that there is very strong linkage disequilibrium (LD) (r2=1; D0=1) between the SEC16A and MAMDC4 loci within the
nuclear subfamily. The X and Y axes are genomic positions on chromosome 9, the deletions in SEC16A and MAMDC4 are located at positions 139370954
and 139748276, respectively. White represents a score of 0 and black represents a score of 1. Linkage disequilibrium cluster plots illustrating (A) r2 values
and (B) the D0 values for the nuclear family. In contrast, (C) SEC16A and (D) MAMDC4 loci occur in distinctly separate LD blocks in the general population.
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complete N-terminus peptide (figure 5B). In the presence of
TFE, the wild-type full-length N-terminus adopted an alpha
helical secondary structure; however, the full-length N-terminus
encoding the SEC16A deletion (369–371) had a similar spectra
profile but exhibited decreased signal amplitude.

Finally, experiments were conducted to investigate if the
SEC16A deletion disrupts co-localisation with Sec31A.
Immunofluorescence microscopy using patient-derived BCLs
from individuals with the SEC16A deletion demonstrated no
qualitative change in Sec16A or Sec31A expression alone or in
their co-localisation (see online supplementary figure S2).

DISCUSSION
A well-characterised, multigenerational AxSpA family was inves-
tigated using exome sequencing and HLA-B*27 genotyping.
Investigation was primarily limited to individuals within

generation II as those individuals were available for precise clin-
ical phenotyping. Individuals from generation III (except III-2)
were not systematically assessed given their lack of availability to
participate in the study, their relatively young age and the fact
that their assignment of phenotype could change with time,
which could confound data analysis. The perfect concordance
of exome and Sanger sequencing excludes SEC16A and
MAMDC4 deletions as technical artefacts. Both deletions were
inherited maternally (I-2), whereas the HLA-B*27 allele was pre-
sumably inherited paternally (I-1). Furthermore, given that I-2 is
HLA-B*27 negative and that all 12 siblings in generation II are
HLA-B27 positive, it was deduced that I-1 was homozygous for
the HLA-B27 allele.

That linkage analysis revealed that there is very strong LD
(r2=1; D0=1) between the SEC16A and MAMDC4 loci within
the nuclear subfamily and extended family members, whereas

Figure 4 SEC16A gene and SEC16A
protein expression is not altered
among individuals with the deletion
mutation. (A) The relative expression of
SEC16A mRNA was determined by
real-time quantitative PCR (qPCR)
analysis of patient-derived B-cell lines.
SEC16A relative expression was
compared between family members
with wild-type (Wt) and heterozygous
(Het) genotypes for the SEC16A and
MAMDC4 deletion. Results are
expressed as mean±SEM and analysed
by t test. (B) Sec16A protein expression
of RIPA lysates from patient-derived
B-cell lines of family members. Blots
are representative of three separate
experiments. Densitometric analysis
was performed to determine the level
of SEC16A expression relative to
tubulin as a loading control. (C)
Comparison of protein expression
between family members with Wt and
Het genotypes for the SEC16A
deletion. Results are expressed as
mean±SEM and analysed by t test.
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SEC16A and MAMDC4 loci occur in distinctly separate LD
blocks in the general population, which suggests that a different
genomic architecture is present on 9q34.3 in this family com-
pared with the general population; a finding possibly attributed
to a large intergenic deletion or a recombination event not
detectable by exome sequencing.

That numerous variables affect genotype–phenotype correl-
ation in complex disease including reduced penetrance, variable
expressivity, epistatic interactions and gene–environment interac-
tions, it was not surprising that a perfect genotype–phenotype
correlation was not achieved in all family members within gen-
eration II. Interestingly, the discordant genotype–phenotype
relationship occurred in two individuals (ie, II-13 and II-17)

that had less severe disease and a significantly later age of onset.
The apparent discrepancy in population frequency between pub-
lically available datasets and the replication cohort is largely
attributed to differences in coverage depth as gaps in the public
datasets result in detection bias.

SEC16A contains 32 exons and encodes a 250 kDa protein
comprising 2357 amino acids. The deletion results in the
removal of three amino acids (small for gestational age) within
the N-terminus, producing a mildly truncated transcript.
MAMDC4 contains 27 exons and encodes a 131 kDa protein
(ie, endotubin) comprising 1216 amino acids. The deletion
results in a premature termination codon (p.Val185Glyfs*2),
producing a severely truncated transcript containing only 187
amino acids, which is likely rapidly degraded by nonsense-
mediated RNA decay (NMD). The primary focus of this study
was to increase our understanding of how the SEC16A deletion
contributes to pathogenicity given that (1) Sec16A functions as
a scaffold protein with multiple central roles for coat protein
complex II (COPII) vesicle formation and trafficking,16–19

which may be of relevance to AxSpA pathogenesis; (2) a recent
study in patients with inflammatory bowel disease (IBD) where
exome sequencing identified multiple rare novel SEC16A
variants;6 (3) very little is known regarding the structure and
function of the MAMDC4 encoded protein;20 and (4) the
MAMDC4 deletion is a target for NMD.

That the SEC16A deletion failed to alter gene or protein expres-
sion was not unexpected considering this deletion failed to
produce a severely premature transcript therefore avoiding NMD,
suggesting that a deleterious effect may be attributed to a mechan-
ism independent of transcription or translation. Interestingly, the
Sec16A N-terminus, which is quite disordered and possesses many
evolutionary conserved disordered binding regions, is critical for
COPII assembly.21 22 Results from CD spectroscopy using a 40
amino acid peptide of the Sec16A N-terminus (selected using
PONDR-FIT23) with and without the deletion confirmed that
both were intrinsically disordered. That TFE induced a distinct
structure only with the wild-type peptide and not with the dele-
tion peptide suggests that the deletion of three amino acids within
a short peptide is sufficient to interfere with local secondary struc-
ture. CD spectroscopy of peptides comprising the complete
N-terminus of Sec16A confirmed the results generated with the
shorter peptide, and further indicated that the deletion is sufficient
to interfere with secondary structure of the entire N-terminus.
The decreased signal amplitude could result either from a perturb-
ation in the structure of the deletion peptide or from a global
destabilisation that produces an increased population of unfolded
protein at equilibrium with a well-folded population.24 Therefore,
the SEC16A deletion may alter the ability of Sec16A to adopt an
ordered structure in the presence of its receptor proteins, which
may contribute to AxSpA in this family.

That Sec16 serves as a template for the Sec13–Sec31 coat,
that both Sec16 and Sec31 share an ACE1 element and that
direct interactions between Sec16 and Sec31 facilitate COPII
assembly,18 the effect of the SEC16A deletion on Sec31A
co-localisation was investigated to better define the functional
impact of the SEC16A deletion. That the SEC16A deletion was
without effect on Sec31A co-localisation could suggest that a
mechanism completely independent of Sec31A (eg, another
component of the COPII coat) might be altered by the
SEC16A-induced conformational change. For example, Sec31A
may be recruited to the COPII assembly site, but the direct
interaction with Sec16A might be impaired due to the
deletion-induced conformational change. Future investigations
using electron microscopy are warranted to address this possibly.

Figure 5 Circular dichroism (CD) spectroscopy performed on the 40
amino acid peptide and the complete N-terminus peptide of Sec16A.
(A) CD spectroscopy of the 40 amino acid peptides demonstrated that
both the Sec16A wild-type (o; black) and mutant (Δ; green) peptides
have a secondary structure that is disordered. The wild-type peptide
(□; blue) in the presence of trifluoroethanol (TFE) adopted a distinct
secondary structure (broad peak from 230 to 200 nm and the
disappearance of the negative peak at 195 nm). The mutant peptide
(+; red) in the presence of TFE failed to adopt a distinct secondary
structure. (B) CD spectroscopy of the complete N-terminus also
demonstrated that both the Sec16A wild-type (o; black) and mutant (Δ;
green) peptides have a secondary structure that is disordered. The
wild-type peptide (□; blue) in the presence of TFE adopted a distinct
secondary structure, whereas the mutant peptide (+; red) in the
presence of TFE had a spectra similar in shape to the wild-type
peptide, but exhibited a decreased signal amplitude. Each CD
spectroscopy graph is representative of the average of 30 spectra.
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Unfortunately, studies investigating the dysfunction of Sec16A
are lacking. However, a role for Sec16 in AxSpA pathogenesis
may involve several possible mechanisms attributed to known
interactions of Sec16A with nuclear factor kappa B,25 TRAF3,26

COPII-binding protein Bap3127 and the MAPK pathway.28 29

Any one or multiple interactions may be negatively disrupted by
the SEC16A-induced conformational change.

This study is not without limitations. As exome sequencing
does not interrogate the complete genome, other events occur-
ring outside the coding region (eg, distal enhancer, silencers)
might also contribute to disease susceptibility in the study
family. For example, the 400 kb region between SEC16A and
MAMDC4 contains an extremely large number of common var-
iants of which many, if not most, are non-coding and are
unlikely to have been picked up by the sequencing method
used. Any of these variants could be the true disease-associated
variant if in LD with the SEC16A and/or MAMDC4 variants.
Although the study design with respect to exome coverage
depth and variant filtering was very conservative, the possibility
exists that a pathogenic variant could have been missed. Since
the effect of the SEC16A deletion was investigated functionally
using only B cells grown in culture, the contribution of other
cell types and the effect of the SEC16A deletion in those cell
types are unknown.

That the population frequency of SEC16A and MAMDC4 was
low and not significantly different between unrelated AxSpA
cases and controls, that both deletions were only detected
together in the study family or in a large replication cohort
(n=2050), that SEC16A and MAMDC4 are in strong LD within
the family and that family members diagnosed with AxSpA who
carried both deletions in synteny in addition to the HLA-B*27
allele had an earlier age of symptom onset suggest that it is the
presence of the private rare deletions in synteny that increases
susceptibility and modifies the disease course in the affected
family members who carry the HLA-B*27 allele. Interestingly,
that affected family members carried both SEC16A and
MAMDC4 deletions and tested positive for HLA-B27 also raises
the possibility that their encoded proteins are involved in
HLA-B27 transport. We do acknowledge that the finding that
AxSpA family members who carried both deletions in synteny
in addition to the HLA-B*27 allele had an earlier age of
symptom onset compared with AxSpA family members who
carried the HLA-B*27 allele but both deletions not in synteny is
based on a very small number of patients, and so this genotype–
phenotype correlation needs to be independently validated.

While this is the first report identifying potentially rare novel
private pathogenic deletions in SEC16A and MAMDC4 in
AxSpA, a study employing exome sequencing of patients with
IBD identified rare novel SEC16A variants. Specifically, a non-
synonymous rare SEC16A variant (c.1480G>C; p.G494R) pre-
dicted to be pathogenic was identified.6 Interestingly, that
variant was located in exon 3, the same exon as the deletion dis-
covered in this study. The finding of rare pathogenic SEC16A
variants in a related autoimmune disease and the conform-
ational change induced by deletion of three highly conserved
amino acid residues from the intrinsically disordered and
critically important N-terminus of Sec16A in the current study
supports a pathogenic role of SEC16A in AxSpA pathogenesis
in this family. That MAMDC1, which has been identified as a
candidate gene for systemic lupus erythematosus,30 is a paralog
of MAMDC4, and that the MAMDC4 deletion is predicted to
be pathogenic through NMD, is consistent with pathogenicity.
However, a better understanding of the effect of the MAMDC4
deletion on structure and function of endotubin warrants

further investigation. In conclusion, this study highlights
the importance of private rare variants in AS/AxSpA and sug-
gests that a proportion of the heritability unaccounted for by
common variation may reside with higher risk rare variants, and
even private variants.
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