ADIPOCYTES MODULATE T CELL FUNCTION THROUGH RELEASE OF LIPIDS

Background and Objectives Obesity is characterised by the presence of inflammation in adipose tissue. Accumulation of several immune cell-types, including CD4+ T cells, has been previously reported in the increasing adipose tissue. This accumulation is also paralleled by changes in cytokine profiles and phenotype of the infiltrating cells. One of the possible mechanisms involved in these changes is the modulation of T cell function by tissue-resident adipocytes. Therefore, we investigated whether adipocytes derived from various adipose tissues can modulate CD4+ T cell cytokine production and proliferation and studied the mechanisms involved in this process.

Materials and Methods CD4+ T cells were purified from peripheral blood mononuclear cells using magnetic beads coated with anti-human CD4. Plate-bound anti-CD3 and soluble anti-CD28 antibodies were used to activate T cells. Adipocytes were isolated from IFP of OA patients by collagenase digestion and were either cultured with purified CD4+ T cells or were cultured in vitro for 24 hours in DMEM/F12 medium supplemented with 0.5% bovine serum albumin to generate adipocyte-conditioned medium (ACM). Cytokine/adipokine production was measured by intracellular cytokine staining (ICS), ELISA or cytokine multiplex. Lipids were isolated using hapten and lipid profiling was performed by liquid chromatography combined with mass spectrometry.

Results CD4+ T cells produced increased levels of IFN\(\gamma\) when activated in the presence of adipocytes. This effect is mediated by soluble mediators, as shown in transwell and adipocyte-conditioned medium (ACM) transfer experiments. Additionally, ACM induced increased proliferation of CD4+ T cells upon activation. Furthermore, adipose tissue contained more IFN\(\gamma\)-producing CD4+ T cells than peripheral blood of the same individuals, in 3 out of 3 cases tested, which indicates a possible in vivo relevance of our results. To investigate the possible molecular mechanisms involved in this effect, we separated the protein and lipid fraction of ACM. Surprisingly, despite previous data indicating that several adipocyte-derived proteins can modulate T cell function, we have found that the increased proliferation of T cells is mainly due to the lipids isolated from ACM. Further separation of these lipids based on polarity revealed that the modulatory effect is mainly confined to fractions containing free fatty acids. All identified fatty acids were able to individually enhance T cell proliferation.

Conclusions These data indicate that adipocytes can modulate CD4+ T cell function through release of soluble mediators. Remarkably, within the soluble mediators identified, lipids and especially free fatty acids are the most prominent modulators of T cell proliferation.

CIRCULATING METASTASIS PROMOTING PROTEIN S100A4 IN IDIOPATHIC INFLAMMATORY MYOPATHIES

Background Adipose tissue secretes a wide range of soluble factors that can influence whole body metabolism. Previous studies have shown an accumulation of macrophages and an enhanced pro-inflammatory profile of these cells in adipose tissue of obese mice. Modulation of macrophages by soluble mediators released by adipocytes has been proposed as a possible mechanism underlying these changes. In humans, an increased number of macrophages in adipose tissue of obese individuals have been observed, although no clear change in macrophages phenotype could be established. Moreover, no information exists about the interaction between macrophages and adipocytes in humans.

Objective In the present study, we explored the possibility that adipocytes modulate the phenotype of macrophages and studied the possible molecular pathways involved in this modulation.

Results Treatment of macrophages with adipocyte-conditioned medium (ACM) resulted in a strong reduction in IL-12p40 secretion upon LPS stimulation, whereas TNF\(\alpha\) and other cytokines remained largely unaffected. This effect was independent of the source of ACM. Interestingly, the inhibition increased with increase in Body Mass Index (BMI) of the adipocyte donor. Among these, the release of several free fatty acids (FA) and PGE\(_2\), correlated with the BMI of the adipocyte donor. Further tests indicated that oleic and linoleic acid, as well as PGE\(_2\), were able to inhibit IL12p40 secretion, whereas palmitic acid could not. Upon separation of ACM protein and lipid fractions, we confirmed that inhibition of IL12p40 resides mainly in the ACM lipid fraction.

Conclusions These results provide first evidence that obesity-related changes in macrophage phenotype could be mediated by adipocytes in humans. These effects are mainly mediated through lipids released by adipocytes. Intriguingly, modulation appears different than in murine obesity, indicating that the immunomodulatory effects of obesity could be different in humans and mice.

ADIPOCYTES MODULATE THE PHENOTYPE OF MACROPHAGES THROUGH SECRETED LIPIDS

Background Adipose tissue secretes a wide range of soluble factors that can influence whole body metabolism. Previous studies have shown an accumulation of macrophages and an enhanced pro-inflammatory profile of these cells in adipose tissue of obese mice. Modulation of macrophages by soluble mediators released by adipocytes has been proposed as a possible mechanism underlying these changes. In humans, an increased number of macrophages in adipose tissue of obese individuals have been observed, although no clear change in macrophages phenotype could be established. Moreover, no information exists about the interaction between macrophages and adipocytes in humans.

Objective In the present study, we explored the possibility that adipocytes modulate the phenotype of macrophages and studied the possible molecular pathways involved in this modulation.

Results Treatment of macrophages with adipocyte-conditioned medium (ACM) resulted in a strong reduction in IL-12p40 secretion upon LPS stimulation, whereas TNF\(\alpha\) and other cytokines remained largely unaffected. This effect was independent of the source of ACM. Interestingly, the inhibition increased with increase in Body Mass Index (BMI) of the adipocyte donor. Among these, the release of several free fatty acids (FA) and PGE\(_2\), correlated with the BMI of the adipocyte donor. Further tests indicated that oleic and linoleic acid, as well as PGE\(_2\), were able to inhibit IL12p40 secretion, whereas palmitic acid could not. Upon separation of ACM protein and lipid fractions, we confirmed that inhibition of IL12p40 resides mainly in the ACM lipid fraction.

Conclusions These results provide first evidence that obesity-related changes in macrophage phenotype could be mediated by adipocytes in humans. These effects are mainly mediated through lipids released by adipocytes. Intriguingly, modulation appears different than in murine obesity, indicating that the immunomodulatory effects of obesity could be different in humans and mice.

CIRCULATING METASTASIS PROMOTING PROTEIN S100A4 IN IDIOPATHIC INFLAMMATORY MYOPATHIES

Background Adipose tissue secretes a wide range of soluble factors that can influence whole body metabolism. Previous studies have shown an accumulation of macrophages and an enhanced pro-inflammatory profile of these cells in adipose tissue of obese mice. Modulation of macrophages by soluble mediators released by adipocytes has been proposed as a possible mechanism underlying these changes. In humans, an increased number of macrophages in adipose tissue of obese individuals have been observed, although no clear change in macrophages phenotype could be established. Moreover, no information exists about the interaction between macrophages and adipocytes in humans.

Objective In the present study, we explored the possibility that adipocytes modulate the phenotype of macrophages and studied the possible molecular pathways involved in this modulation.

Results Treatment of macrophages with adipocyte-conditioned medium (ACM) resulted in a strong reduction in IL-12p40 secretion upon LPS stimulation, whereas TNF\(\alpha\) and other cytokines remained largely unaffected. This effect was independent of the source of ACM. Interestingly, the inhibition increased with increase in Body Mass Index (BMI) of the adipocyte donor. Among these, the release of several free fatty acids (FA) and PGE\(_2\), correlated with the BMI of the adipocyte donor. Further tests indicated that oleic and linoleic acid, as well as PGE\(_2\), were able to inhibit IL12p40 secretion, whereas palmitic acid could not. Upon separation of ACM protein and lipid fractions, we confirmed that inhibition of IL12p40 resides mainly in the ACM lipid fraction.

Conclusions These results provide first evidence that obesity-related changes in macrophage phenotype could be mediated by adipocytes in humans. These effects are mainly mediated through lipids released by adipocytes. Intriguingly, modulation appears different than in murine obesity, indicating that the immunomodulatory effects of obesity could be different in humans and mice.
A4.2 Adipocytes Modulate T Cell Function through Release of Lipids

Andreea Ioan-Facsinay, Joanneke C Kwekkeboom, Sanne Westhoff, Martin Giera, Yoann Rombouts, Tom WJ Huizinga, André Deelder, Margreet Kloppenburg and René EM Toes

Ann Rheum Dis 2013 72: A24
doi: 10.1136/annrheumdis-2013-203217.2

Updated information and services can be found at:
http://ard.bmj.com/content/72/Suppl_1/A24.1

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Immunology (including allergy) (5144)
- Inflammation (1251)
- Obesity (nutrition) (106)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/