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ABSTRACT
Objective Notch signalling pathways are critical for
angiogenesis and endothelial cell (EC) fate; however the
mechanisms regulating these processes in the inflamed
joint remain to be elucidated. Here, we examine whether
Notch signalling mediates vascular endothelial growth factor
(VEGF) and angiopoietin 2 (Ang2)-induced vascular function.
Methods Notch-1 intracellular domain (Notch-1 IC),
Notch-4 IC, Delta-like-ligand 4, Hes-related transcriptional
repressors-1 and 2 (Hrt-1, Hrt-2) mRNA and/or protein
expression was measured by Real-time PCR and/or western
blot. VEGF/Ang2 induced EC function was assessed using
transwell invasion chambers, matrigel tube formation
assays and wound repair scratch assays ± Notch-1 siRNA
or an γ-secretase inhibitor N-(N-(3,5-Difluorophenacetyl-L-
alanly))-S-phenylglycine-t-Butyl Ester (DAPT) in RA synovial
explants or human microvascular EC. Interleukin (IL)-6 and
IL-8 were measured by ELISA and MMP2 and 9 by gelatine
zymography.
Results Notch-1 IC and Notch-4 IC protein expressions
were demonstrated in RA and psoriatic arthritis synovial
biopsies, with minimal expression observed in Osteoarthritis
(OA). VEGF and Ang2 induced Notch-1 IC/ Notch-4 IC
protein expression in synovial explant cultures and human
microvascular EC levels were further potentiated by VEGF/
Ang2 stimulation in combination. Notch-1, Delta-like-ligand
4, and Hrt-2 mRNA expression were significantly induced by
VEGF and Ang2 alone and in combination. Furthermore
VEGF/Ang2-induced EC invasion, angiogenesis and
migration were inhibited by Notch-1 siRNA or DAPT.
Conditioned media from VEGF/Ang2 stimulated RA synovial
explants induced EC tube formation, an effect that was
inhibited by DAPT. Finally, DAPT significantly decreased
VEGF/Ang2 induced IL-6, IL-8, MMP2 and 9 expressions in
RA synovial explants.
Conclusions Notch-1 mediates VEGF/Ang2-induced
angiogenesis and EC invasion in inflammatory arthritis.

INTRODUCTION
Inflammatory arthritis (IA) is a progressive auto-
immune disease affecting 1% of the population.1

Dysregulated angiogenesis is an early event in IA
facilitating synovial membrane (SM) vessel inva-
sion, persistent leukocyte infiltration and lining
layer hyperplasia, capable of destroying adjacent
cartilage and bone.2–4 Vascular endothelial growth
factor (VEGF), Angiopoietin (Ang), platelet derived
growth factor and transforming growth factor-β
all regulate vessel stability and induce fibroblast

invasion.4–10 Furthermore, studies demonstrate
similar dysfunctional microvessels in the papillary
dermis of skin in Psoriatic arthritis (PsA) patients
associated with differential expression of VEGF,
Ang1/2, MMP-9 and E-selectin.11–14

VEGF stimulates endothelial cell (EC) proliferation,
permeability, migration and promotes EC survival.3 15

Ang, a family of EC specific factors are also funda-
mental in vessel formation.16–21 Complementary
action between VEGF and Ang controls vessel stabil-
ity and maturation.19–21 Ang1 knockout mice are
embryo lethal, due to absent capillary sprouts and
vessel wall deformity.16 Ang1 overexpression increases
EC/pericyte interactions resulting in stable vascula-
ture while angiopoietin 2 (Ang2) antagonises Ang1
on invading vascular sprouts, blocking stabilisa-
tion.18–20 Differential expression of Ang1, Ang2 and
VEGF has been demonstrated in synovial tissue/cells
and are associated with differential pathogenic out-
comes.5 8 22 23 Expression of Ang1, Ang2 and their
receptor Tie2 are significantly increased in progression
of collagen induced arthritis (CIA), and Tie2 blockade
ameliorates bone destruction.24 25 Recently, we
demonstrated that Tie2 mediates Toll-like receptor-2
induced angiogenesis in Rheumatoid arthritis (RA).26

The Notch signalling pathway plays a pivotal
role in vascular development, cell-cell communica-
tion, cell fate decisions.27–30 Notch is also critical
for EC-pericyte interactions and vascular network
remodelling.28–33 Four Notch receptors are described
in mammals with ligands encoded by Jagged-1, 2
and Delta-like 1, 3, 4 (DLL-1, DLL-3, DLL-4)
genes.34–41 Cleavage of Notch receptors releases
Notch intracellular domain which translocates into
the nucleus,39 40 regulating downstream target
genes, Hrt (Hes-related transcriptional repressors)
and Hes (Hairy/Enhancer of Split).28 41 Previous
studies have shown Notch and/or its receptors
in inflamed SM and synoviocytes.42 43 Jagged-1
modulates CIA by regulating T cell responses.44

Notch-1 can mediate TNFα-induced synoviocyte
proliferation,42 45 and Notch-3 and DLL-1 mediate
collagen-specific T-cell activation and altered
T helper cells responses.46 However, the mechan-
isms by which Notch signalling regulates angiogen-
esis in the inflamed joint remain to be elucidated. In
this study we examine if Notch signalling mediates
VEGF/Ang2 induced angiogenesis in the inflamed
joint using ex vivo synovial explant cultures and
microvascular ECs.
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MATERIAL AND METHODS
Patient recruitment and arthroscopy
Twenty-nine subjects (10M: 19F) were recruited to this study
(RA=10; PsA=10; OA=9). Synovial tissue biopsies were
obtained at arthroscopy as previously described.47 Patients with
RA and PsA, fulfilled the American College of Rheumatology48

and Classification Criteria for Psoriatic Arthritis (CASPAR)49

criteria. The median age of the RA patients was 52.84 (27.26–
80.22) years, the PsA 64.39 (32.27–80.58) years and OA 55.89
(37.22–77.21) years. The median DAS28 for RA patients was
4.565 (1.75–6.23), for PsA 3.625 (2.1–4.92) and OA 4.025 (3.25–
4.05). Fifty per cent of inflammatory patients (RA/PsA) were
naive for disease modifying antirheumatic drugs and steroids,
others had failed at least one disease modifying antirheumatic
drugs. Following institutional approval by the St. Vincent’s
University Hospital medical research and ethics committee, all
patients gave written informed consent. All treatment was
fully compliant with the Helsinki Declaration.

Ex vivo synovial explant culture
To examine the effect of VEGF/Ang2 alone and in combination
on Notch-1 intracellular domain (Notch-1 IC) and Notch-4 IC
expression an ex vivo whole synovial tissue explant model was
established.26 RA/PsA synovial explant tissue was sectioned into
96-well-plates (Falcon, Franklin Lakes, New Jersey, USA) in
Roswell Park Memorial Institute (RPMI) 1640 supplemented
with streptomycin (100 units/ml) and penicillin (100 units/ml)
and cultured with VEGF (20 ng/ml)50 (R&D systems, Abingdon,
UK), Ang2 (250 ng/ml)51 (R&D systems) alone and in combin-
ation for 24 h at 37°C in 5% CO2. Supernatants were harvested
and tissue was snap frozen for protein analysis.

Culture of HMVEC
Human microvascular ECs (HMVEC) (Lonza, Waterville, Inc,
California, USA), were grown in endothelial basal medium
(EBM) supplemented with 5% fetal calf serum (FCS), 0.5 ml
human epidermal growth factor (hEGF), 0.5 ml hydrocortisone,
0.5 ml gentamicin, 0.5 ml bovine brain extract (Lonza) and
used for experiments between passages 3–8. For Notch-1 IC
and Notch-4 IC protein expression, HMVEC were grown to
confluence, then cultured in serum reduced EBM for 24 h (1%
FCS) before stimulation with VEGF (20 ng/ml) alone and in
combination with Ang2 (250 ng/ml) for a further 24 h.

Western blot analysis
Synovial tissue and HMVEC protein lysates were prepared as previ-
ously described.52 Proteins from synovial tissue lysates and
HMVEC were resolved on sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) prior to transfer onto nitrocellulose
membrane (Amersham Biosciences, Buckinghamshire, UK). Rabbit
polyclonal anti Notch-1 or Notch-4 (Millipore, Temecula,
California, USA) were used as previously described.52 Blots were
developed using enhanced chemiluminescence (ECL) (Pierce,
Rockford, Illinois, USA) and signal intensity was quantified by
densitometry using the Electrophoresis Documentation and
Analysis System (EDAS) 120 system (Kodak, Rochester, New York,
USA). Full-length Notch-1 (300 kDa) and extracellular fragment
(200 kDa) were also observed in addition to cytoplasmic domain
(120 kDa) as per the manufacturer’s instructions.

Immunohistochemistry
Immunohistochemical analysis for Notch-1 and Notch-4 in
RA, PsA and OA tissue was performed as previously

described.52 Briefly sections were incubated with primary anti-
bodies against rabbit-polyclonal Notch-1, Notch-4 (Millipore)
and isotype matched rabbit-polyclonal IgG control (DAKO,
UK) at room temperature for 1 h. Colour was developed in
solution containing diaminobenzadine-tetrahydrochloride
(Sigma), 0.5% H2O2 in phosphate buffered saline (PBS) buffer
(pH 7.6). Slides were counterstained with haematoxylin and
mounted. Slides were analysed using a well-established semi-
quantitative scoring method.52 53

Notch-1 siRNA gene silencing studies
For each 25 cm2 flask of HMVEC transfected, 5 ml of 20 pmol
gene-specific siRNA duplexes (Notch-1 or Scramble) and 5 ml of
Lipofectamine 2000 Reagent (Invitrogen, BioSciences Ltd.,
Ireland) were mixed gently with 0.99 ml serum/antibiotic-free
Optimal Minimal Essential Medium (OPTI-MEM) (Invitrogen)
and incubated at room temperature for 20–30 min in the dark.
The combination was mixed with full (5% FCS) EBM, added
to cells and incubated overnight. The siRNA duplexes for
Notch-1 (5459NM-017617) and Scrambled control (a nonsense
siRNA of the target sequence) were from Sigma.

γ-Secretase inhibitor (DAPT) studies
For γ-secretase inhibitor study, biopsies were sectioned into
96-well-plates and HMVEC were plated in 48-well-plates. Cells
were cultured with VEGF (20 ng/ml), Ang2 (250 ng/ml) alone
and in combination in the presence or absence of N-(N-(3,5-
Difluorophenacetyl-L-alanly))-S-phenylglycine-t-Butyl Ester
(DAPT) (Sigma) used at between 1–50 mM, or Dimethyl sulfoxide
(DMSO) vehicle control. The supernatants (conditioned media)
were harvested for cytokines and tube formation analysis.

mRNA extraction and analysis
HMVECwere grown to confluence, cultured in serum reduced EBM
for 24 h (1% FCS) and then stimulated with VEGF (20 ng/ml) alone
and in combination with Ang2 (250 ng/ml) for 3, 6 and 24 h. Total
RNA was isolated using RNeasy Mini Kit (Qiagen, Crawley, UK)
according to the manufacturer’s specifications. Purity of RNA was
measured and samples with a ratio over 1.8 (260 : 280 nm) used in
subsequent experiments. Total RNA (1–2 mg) was reverse
transcribed to cDNA. Relative quantification of gene expression
was analysed with preoptimised conditions using Lightcycler-480
PCR technology (Roche Diagnostics, Lewes, UK). Specific
primers for Notch-1 (Hs00413187_ml), Hrt-1 (Hs01114113_ml),
Hrt-2 (Hs00232622_ml) and DLL-4 (Hs00184092_ml) were
used and primers for 18S (Hs99999901_sl) ribosomal RNA
were used as an endogenous control (Applied Biosystems,
Cheshire, UK).

Invasion assay
HMVEC invasion was assayed in Transwell Matrigel Invasion
Chambers (BD Biosciences, Oxford, UK). HMVEC (3×104 cells)
transiently transfected with Notch-1 siRNA or scrambled
control siRNA were added to invasion chambers on precoated
matrigel membranes containing EBM supplemented with 2.5%
FCS. EBM containing 5% FCS was placed in the lower wells of
the assay. Cells were stimulated with VEGF (20 ng/ml) and
Ang2 (250 ng/ml) alone and in combination for 16 h. Invasion
quantification was assessed as previously described.26

Tube formation and cell migration assays
Matrigel (50 ml) (Becton Dickinson, Franklin Lakes, New Jersey,
USA) was added to 96-well culture plates and allowed to poly-
merise at 37°C for 1 h before plating the cells. HMVEC
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(1×104 cells) transiently transfected with Notch-1 siRNA or
scrambled Notch-1 control siRNA were then plated in 250 ml
EBM/well onto the surface of the matrigel and stimulated with
VEGF (20 ng/ml) and Ang2 (250 ng/ml) alone and in combin-
ation for 24 h. Furthermore to examine the effect of the syn-
ovial microenvironment on EC function, HMVEC were
cultured with conditioned media from stimulated synovial
explant cultures VEGF, Ang2 alone and in combination±DAPT

for 24 h. HMVEC tubes formation was quantified as previously
described.26 Wound scratch migration assays were also per-
formed as previously described.54

Cytokine measurements
Interleukin (IL)-6 and IL-8 expression in RA explant cultured
supernatants was measured by ELISA according to the manu-
facturer ’s instructions (R&D systems).

Figure 1 Vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) regulate Notch protein expression in synovial explant cultures.
(A) Notch-1 intracellular domain (Notch-1 IC) and Notch-4 IC protein expression were analysed using Western blot in synovial tissues biopsies
obtained from RA (n=7), psoriatic arthritis (n=7) and OA (n=6) patients. β-actin was used as loading control. (B) Notch-1 IC and Notch-4 IC protein
expression was examined in ex vivo RA synovial explants cultures following stimulation with VEGF (20 ng/ml) and Ang2 (250 ng/ml) alone or in
combination for 24 h. β-actin was used as loading control. Representative blot of n=3 experiments performed in triplicate.
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Activities of MMP-9 and MMP-2 by zymography
MMP-2 and MMP-9 expression in synovial explants and
HMVEC supernatants were measured using gelatin zymogra-
phy (6 mg/ml). 10 ml of supernatants were loaded onto 7.5%
polyacrylamide gels. Following electrophoresis, gels were
washed with 2.5% Triton X-100 and incubated with substrate
buffer at 37°C for 24 h prior to Coomassie brilliant blue stain
and destained with water.

Statistical analysis
SPSS V.15 system for windows was used for statistical analysis.
For comparisons of multiple groups analysis of variance (ANOVA)
with Dunnett post-test for parametric data or the Friedman test
with Dunns post-test for non-parametric data was performed.
Non-parametric Wilcoxon Signed Rank test for related samples or
Parametric Student t tests were performed as appropriate for com-
parison of two experimental conditions. p<0.05 were considered
significant.

RESULTS
Upregulation of Notch signalling by VEGF and Ang2
Protein expression of Notch-1 IC (120 kD) and Notch-4 IC
(68 kD) were detected in RA and PsA tissue lysates, with
minimal expression observed for OA tissue (figure 1A; online
supplementary figure S1). Notch-1 IC and Notch-4 IC expres-
sion was demonstrated in the synovial perivascular/vascular,
sublining layer and lining layer regions in RA (figure 2Ai, ii)
and PsA tissue (figure 2Aiii, iv), with minimal expression
observed in OA (figure 2Av, vi). No expression for IgG control
was observed (figure 2Avii, viii). Semiquantification demon-
strated a significant increase in Notch-1 IC and Notch-4 IC
expression in RA and PsA patients compared with OA

(p<0.05) (figure 2B). Furthermore Notch-1 IC and Notch-4 IC
expression in the vascular regions was significantly higher in
PsA compared with RA (p<0.05) (figure 2B).

VEGF and Ang2 alone induced Notch-1 IC and Notch-4 IC
protein expression, while VEGF/Ang2 combination further
increased their expression compared with either VEGF or Ang2
alone (figure 1B). A similar response was observed for PsA
explants (see online supplementary figure S2A).

In HMVEC, VEGF and Ang2 alone and in combination induced
Notch-1 IC and Notch-4 IC protein expression (figure 3A). Gene
expression of Notch-1 receptor, downstream target genes Hrt-1,
Hrt-2 and ligand DLL-4 were assessed at 3, 6 and 24 h, with signifi-
cant induction observed only at 24 h (figure 3B). VEGF and Ang2
stimulation alone significantly induced DLL-4 and Hrt-2 mRNA
(p<0.05), with the combination of VEGF/Ang2 further potentiat-
ing the expression of Notch-1, its ligand DLL-4 and Hrt-2 (all
p<0.05). No significant effect was observed for Hrt-1 (figure 3B).

Notch-1 mediates VEGF/Ang2 induced EC invasion
and tube formation
Notch-1 siRNA (siN1) transfection resulted in minimal detect-
able levels of Notch-1 IC compared with scramble control (see
online supplementary figure S2B) and dramatically inhibited
VEGF-induced expression (see online supplementary figure
S2C). Furthermore Notch-1 IC protein expression in HMVEC
was significantly decreased in the presence of DAPT (see online
supplementary figure S2D).

Figure 4A,B shows representative images and quantification of
HMVEC invasion demonstrating significant EC invasion in
response to VEGF and Ang2 alone, which was further potentiated
by VEGF/Ang2 combination. This effect was significantly

Figure 2 Notch-1 and Notch-4 localised expression in RA, psoriatic arthritis (PsA) and OA patients. (A) Representative photomicrographs showing
Notch-1 and Notch-4 localised expression in synovial tissue from RA (n=10), PsA (n=10) and OA (n=9) patients. Notch-1 and Notch-4 expression
are shown in RA tissue (i, ii), PsA (iii, iv), OA (v, vi) respectively. Negative staining for IgG control (vii, viii). (B) Quantification of Notch-1 and
Notch-4 in lining, sublining and perivascular regions of RA, PsA and OA tissue. *p<0.05 OA significantly different from RA, #p<0.05 OA
significantly different from PsA, $p<0.05 PsA significantly different from RA. Original magnification ×10.
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inhibited in the presence of Notch-1 siRNA, with no effect for
scrambled control (figure 4A,B).

VEGF and Ang2 alone and in combination induced angio-
genic tube formation, evident by an increase in the number of
EC connecting branches (figure 5A). Notch-1 siRNA transfected
HMVEC significantly inhibited VEGF/Ang2 induced tube for-
mation, with no effect for scramble siRNA control. Similar
effects were observed for HMVEC migration where DAPT
inhibited VEGF/Ang2 combination induced EC migration (see
online supplementary figure S3).

Notch signalling mediates VEGF/Ang2 induced
angiogenesis and pro-inflammatory cytokine production
in RA explants cultures
To assess the effect of the RA synovial microenvironment on
EC function, synovial explants were stimulated with VEGF/
Ang2±DAPT. RA synovial explant conditioned media treated
with VEGF/Ang2 alone and in combination significantly
increased HMVEC tube formation compared with control. This
effect was markedly decreased in the presence of DAPT treated
explants (figure 5B).

VEGF and Ang2 alone and in combination induced
pro-MMP-2 and MMP-9 in RA synovial explants and HMVEC,
an effect inhibited by DAPT (figure 6A). Finally, VEGF and
Ang2 alone significantly induced IL-6 and IL-8 expression from
RA synovial explants with the VEGF/Ang2 combination further
potentiated their expression. This effect was significantly inhib-
ited by DAPT (figure 6B). DAPT also inhibited basal cytokine
secretion, suggesting that it may effect other pathways that
regulate endogenous cytokine secretion.

DISCUSSION
Angiogenesis and cell migration are critical in the pathogenesis
of inflammatory diseases. Here, we demonstrate increased
Notch-1 IC and Notch-4 IC protein expression in inflamed syn-
ovial tissue compared to OA tissue, and demonstrate that
expression is further enhanced by VEGF/Ang2 stimulation of
RA/PsA synovial explant cultures and HMVEC. Notch-1 recep-
tor mRNA levels, downstream target genes Hrt-2 and ligand
DLL-4 were significantly increased by VEGF/Ang2 stimulation,
alone and in combination. In RA synovial explants and
HMVEC cultures, VEGF/Ang2 induced EC invasion, angiogenic

Figure 3 Vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) regulate the Notch signalling pathway in human microvascular
endothelial cell (HMVEC). (A) Notch-1 intracellular domain (Notch-1 IC) and Notch-4 IC protein expression was examined in HMVEC following
stimulation with VEGF (20 ng/ml) and Ang2 (250 ng/ml) alone or in combination for 24 h by Western blot. β-actin was used as loading control.
Representative blot of n=4 experiments. (B) Notch-1, Hrt-1. Hrt-2 and DLL-4 mRNA expression was quantified in HMVEC following stimulation with
VEGF (20 ng/ml) and Ang2 (250 ng/ml) alone or in combination for 24 h and normalised to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
Data is representative of three independent experiments. Values are expressed as mean±SEM of n=3 experiments. $p<0.05 significantly different
for comparison of multiple parameters by ANOVA, *p<0.05 significantly different from basal, #p<0.05 significantly different from VEGF.
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tube formation, MMPs and cytokine expression, effects that
were inhibited by Notch blockade. These data suggest that
Notch signalling pathways mediate the pro-angiogenic effects
of VEGF/Ang2 in IA.

Angiogenesis occurs early in the pathogenesis of inflamma-
tion.1–4 Distinct vascular morphology observed in IA or psoria-
sis plaques is related to expression of VEGF, Ang and their
receptors.5 8 11 12 Cytokines and toll-like receptor (TLRs)
induce VEGF, Tie2, Ang1 and Ang2 in synovial fibroblasts and
explant cultures.3 7 26 55–58 VEGF mediates hypoxia-induced
pro-angiogenic pathways in the inflamed joint.59 60

Furthermore, in a CIA model, blocking Tie2 activation inhib-
ited arthritis-induced angiogenesis, receptor activator of nuclear
factor Kappa-B ligand (RANKL) expression and bone
erosion.25 61 This process is dynamic, with studies demonstrat-
ing that it is the interactions between the VEGF and Ang-Tie2
pathways that are critical for new vessel formation, stability
and survival. In the current study we showed increased expres-
sion of Notch-1 IC and Notch-4IC in inflamed synovium com-
pared with OA, with highest expression observed in PsA
vascular regions. Furthermore we demonstrated complementary
interactions between VEGF and Ang2 acting via the Notch-1
signalling pathway to enhance EC invasion and tube forma-
tion, supporting the hypothesis of an unstable synovial vascu-
lar microenvironment.3 59 60 62 The previously observed
abnormal synovial vascular morphology, differential maturation
status and coexpression of VEGF/Ang2 on synovial vessels,

suggest that the dysfunctional synovial vessels may be regu-
lated by VEGF/Ang2.5 60 62 This is consistent with previous
reports in cancer models demonstrating that Ang2 blocks vessel
stabilisation and induces capillary remodelling and new vessel
sprouting in the presence of abundant VEGF.18–21 Furthermore,
Hashizume et al, demonstrated that inhibition of Ang2 and
VEGF together slows tumour growth by inhibiting sprouting
angiogenesis and proliferation.63

In this study, we demonstrate that VEGF and Ang2 alone
increase Notch-1 IC and Notch-4 IC protein expression, down-
stream target genes and the ligand DLL-4, with the VEGF/Ang2
combination potentiating this effect further. In addition, VEGF/
Ang2 induced EC invasion, angiogenic tube formation and
migration were inhibited by Notch-1 siRNA or DAPT.
Furthermore, conditioned media from stimulated RA synovial
explants induced EC tube formation, an effect inhibited by
Notch blockade. Finally, we demonstrated that VEGF/Ang2
induced cytokine and matrix metalloproteinase (MMP) produc-
tion was inhibited by DAPT in RA synovial explants, further
suggesting Notch mediates VEGF/Ang2 pro-angiogenic effects
in the inflamed synovial microenvironment. While the comple-
mentary functional interactions of VEGF/Ang2 in cancer
models have been described and that VEGF can regulate Notch,
this is the first study to show that Notch mediates the down-
stream functional effects of VEGF/Ang2 interactions in RA
explants and HMVEC. In the conditioned media tube formation
assays it is unclear which of the growth factors has a stronger

Figure 4 Vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2)-induced cell invasion is dependent on Notch signalling.
(A) Representative photomicrograph shows human microvascular endothelial cell (HMVEC) invasion under basal conditions (left panel), following
VEGF/Ang2 stimulation (middle panel) and in the presence of Notch-1 siRNA (siN1, right panel). At 24 h invading cells attached to lower membrane
were fixed (1% glutaraldehyde) and stained (0.1% crystal violet) (hpf, magnification × 40). (B) Representative graphs quantifying non-transfected
(control), transfected (Notch-1 or Scramble siRNA), HMVEC invasion following stimulation with VEGF (20 ng/ml), and Ang2 (250 ng/ml) alone or in
combination for 16 h. Data are expressed as mean±SEM of replicate experiments (n=4). $p<0.05 significantly different for comparison of
multiple parameters by ANOVA, #p<0.05 significantly different from VEGF, *p<0.05 significantly different.

Ann Rheum Dis 2013;72:1080–1088. doi:10.1136/annrheumdis-2012-201978 1085

Basic and translational research

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://ard.bm

j.com
/

A
nn R

heum
 D

is: first published as 10.1136/annrheum
dis-2012-201978 on 17 N

ovem
ber 2012. D

ow
nloaded from

 

http://ard.bmj.com/


Figure 5 Notch signalling mediates vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2)-induced cell tube formation. (A)
Representative photomicrographs showing human microvascular endothelial cell (HMVEC) tube formation at baseline (left panel), following
stimulation with VEGF and Ang2 (middle panel), and in the presence of Notch-1 siRNA transfection (right panel). Quantification of HMVEC tube
formation following transfection with Notch-1 or Scramble siRNA following stimulation with VEGF (20 ng/ml) and Ang2 (250 ng/ml) alone or in
combination. Data are expressed as mean±SEM of replicate experiments (n=4). (B) Representative photomicrograph shows HMVEC tube formation
in basal conditioned media containing DMSO as vehicle control (left panel), conditioned media containing VEGF/Ang2 combination (middle panel),
and in the presence of 50 mM N-(N-(3,5-Difluorophenacetyl-L-alanly))-S-phenylglycine-t-Butyl Ester (DAPT) (right panel). Connecting branches
numbers were quantified following stimulation with VEGF (20 ng/ml) and Ang2 (250 ng/ml) alone or in combination. Data are expressed as mean
±SEM of replicate experiments (n=4). $p<0.05 significantly different for comparison of multiple parameters by ANOVA or by Friedman analysis,
#p<0.05 significantly different from VEGF, *p<0.05 significantly different.

Figure 6 N-(N-(3,5-Difluorophenacetyl-L-alanly))-S-phenylglycine-t-Butyl Ester (DAPT) inhibits vascular endothelial growth factor (VEGF)/angiopoietin
2 (Ang2) induced MMPs and cytokines activities. (A) Representative in-gel zymography of pro-MMP-9 and MMP-2 activities (inverted for clarity) in
human microvascular endothelial cells (HMVEC) and synovial explants following stimulation with VEGF (20 ng/ml) and Ang2 (250 ng/ml) alone or in
combination in the presence of DAPT (50 mM) or DMSO vehicle control. (B) Levels of IL-6 and IL-8 were assayed by ELISA in conditioned media with
DAPT (50 mM). Values are expressed as mean±SEM of replicate experiments (n=5). $p<0.05 significantly different for comparison of multiple
parameters by ANOVA or by Friedman analysis, #p<0.05 significantly different from VEGF, *p<0.05 significantly different.
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effect, as this model maintains the architecture and cell-cell
contact of the multiple cells in the synovial tissue, thus other
downstream factors may also contribute to the observed func-
tional effect. Previous studies have shown that the relative con-
tribution of VEGF and Ang2 to their complementary action
varies depending on the cell type and microenvironment, with
studies showing complementary and inhibitory effects of Ang2
on VEGF, 19 63 64 mechanisms which can also be dependent on
the different vascular beds.65

Induction of DLL-4 expression in endothelial tip cells of
sprouting vessels in response to VEGF resulting in activation of
Notch in adjacent stalk cells has been demonstrated.66 Ang1/Tie2
signalling can induce Notch/DLL-4 through acutely transforming
retrovirus (AKT8) in rodent Tcell lymphoma-mediated activation
of β-catenin.67 Notch-3 also cooperates with hypoxia-inducible
factor (HIF)1α to regulate Ang2 expression and neovascularisa-
tion under hypoxic conditions.68 Moreover, Notch-1 or Notch-4
mediate cyclic strain-induced angiogenesis and Ang1/Tie2 signal-
ling,69 Consistent with the dysfunctional vascular morphology
observed in inflamed joints, differential interactions of Notch
with specific ligands has been shown to result in abnormal vessel
branching, stability and morphology.13 Moreover, Notch signal-
ling promotes intergrin/focal adhesion kinase (FAK) mediated
pathways, which are known to be overexpressed in the inflamed
synovium70 71 and promote EC branching/sprouting, vacuolation
and lumen formation.72–76

Finally, we demonstrate that Notch mediates VEGF/Ang2
induced IL-6 and IL-8 in synovial explants. The observed inhibi-
tory effect of DAPTon basal cytokine secretion also suggests that
Notch-1 mediates other pathways involved in regulating endogen-
ous cytokine secretion. This is supported by studies showing
Notch signalling can regulate Tcell differentiation in RA patients
and mediate cytokine production from RA synovial fibroblasts
and T helper cells.44 46 Notch inhibition downregulates Th17 and
Th1 responses in a Giant Cell Arthritis model.77 Furthermore
DAPT can inhibit cytokine/chemokine expression from dendritic
cells (DC) and T cells78 and can inhibit IL-6 secretion from RA
fibroblast-like synoviocytes (FLS).79 Thus, in addition to regulat-
ing vascular morphology, Notch signalling may also mediate
VEGF/Ang2 induced cytokine profiles in the joint, further exacer-
bating the inflammatory response and joint destruction.

Beneficial effects of Notch signalling blockade include inducing
tumour cell apoptosis, suppressing neuroblastoma cell growth
and differentiation,80–82 In contrast, this therapeutic approach
may conversely accelerate tumour metastasis and invasion,83 84

suggesting that vessel stabilisation, normalisation and improve-
ment of oxygenation are key determinants of outcome.85 Studies
also demonstrate Notch signalling is engaged in collagen II
(CII)-specific Th1-type and Th17-type expansion, and suggest
selective inhibition of Notch signalling pathways as potential
therapeutic strategies for the treatment of RA.46

In conclusion, this is the first study to show that VEGF/
Ang2 induced pro-angiogenic/inflammatory mechanisms are
mediated by Notch signalling pathways in the inflamed joint,
further supporting the concept of developing therapeutic
targets to the VEGF/Ang2-Notch axis in the treatment of IA.
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