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The role of B-cells in the pathophysiology
of lupus nephritis (LN) is suspected since
decades. Amazingly, a report from 1977,
aimed at describing the pathological char-
acteristics of human LN described ‘prolif-
eration of plasma cells (PCs) and
plasmacytoid mononuclear cells’ in the
spleen and the bone marrow (BM), but
not in the kidneys.1 In murine lupus,
Dixon’s group discovered that polyclonal
B-cell activation was the first detectable
immunological abnormality in all strains,
which could be observed as early as after
2 weeks of age.2 Somewhat later, the same
group postulated that murine lupus can be
divided into two main types: type 1
murine systemic lupus erythematosus
(SLE) (NZB/W and BXSB strains), charac-
terised by primary B-cell hyperresponsive-
ness to B-cell growth and differentiation
factors and type 2 murine SLE (MRL/lpr
strain), characterised by T-helper cell
hyperactivity and overproduction of B-cell
growth factors by proliferating T cells.3 A
step forward was the discovery by Talal’s
group that besides polyclonal B-cell acti-
vation, a more restricted autoantibody
response occurred with time, as suggested
by a preferential use of some VH genes by
certain MRL/lpr mice,4 thereby leading to
further work demonstrating the presence
of somatic mutations, affinity maturation
and isotype switching as critical mechan-
isms of pathogenic anti-DNA antibody
production in murine and human lupus.

PLASMABLASTS AND PCS
The production of autoantibodies depends
on the capacity of activated and proliferating
autoimmune B-cells to become autoantibody-
secreting cells (ASCs). During this process,
B-cells progressively lose their proliferating
ability but increase their autoantibody pro-
duction. Two types of ASCs have been
described: plasmablasts (PBs) and PCs, the
former being the precursor of the latter.5 PBs

are CD19+ CD20− CD27+CD38++

CD138± highly proliferating IL-6-dependent
cells, which have the capacity to migrate.
PCs are CD19+ CD20− CD27−CD38++

CD138+ non-dividing cells, which have lost
their migration ability. The transition from
B-cells to PBs and PCs is characterised by
downregulation of transcription factors
Pax-5 and Bcl-6 and upregulation of tran-
scription factor Blimp1. Both PBs and PCs
are short-lived but, if PCs find a niche in the
BM (under normal conditions) or in
inflamed tissues (under pathological condi-
tions), they become long-lived PCs. The
others die by apoptosis.
In NZB/W mice, PCs can be found in

the BM, the spleen and in the kidneys,
where they infiltrate the tubulointersti-
tium of the cortex and the outer
medulla.6 Interestingly, 40% of spleen
ASC in NZB/W mice are non-dividing
long-lived PCs, which cannot be removed
by immunosuppressive treatment and con-
tinue to produce autoantibodies.7 In
human lupus, the numbers of circulating
PBs and PCs are increased, commensurate
with disease activity, as assessed by the
Systemic Lupus Erythematosus Disease
Activity Index (SLEDAI).8 9 Moreover, PC
infiltration was detected in the kidney of
patients suffering from more severe renal
disease, namely, Class III or IV LN (com-
pared with Class II and V).10

KIDNEY STROMAL FACTORS AND
PCS FATE
Stromal cells strongly interact with sur-
rounding infiltrating cells (including those
from the B lineage), in particular, by pro-
duction of several growth factors. Thus,
in multiple myeloma (MM), vascular
endothelial growth factor, fibroblast
growth factor-2 (FGF-2), stromal-derived
factor-1 (SDF-1) and hepatocyte growth
factor (HGF), all produced by stromal
cells, promote MM cells migration.11

HGF is of importance in LN not only as a
chemotactic molecule for PCs but also as
an antagonist of the profibrotic effects of
TGFβ1(transforming growth factor β1).
Of interest in human SLE nephritis
Peterson et al showed that immunoglobu-
lin heavy (IGHG3) and light (IGL) chains
transcripts (B cell signature) marked one
of the clusters (cluster IV) and Lyn a
Src-family kinase activated after B-cell

receptor stimulation also had an increased
expression. In addition, B cell transcripts
expression correlated significantly with
cellular crescents, fibrous crescents and
chronicity index, yet TGFβ1 expression
was decreased compared with controls,
while no data were provided on HGF
expression.12 In this respect, the balance
between the expression of the two major
cytokines, HGF and TGFβ1, on LN base-
line biopsies, was found to predict short-
term renal outcome after treatment with
cyclophosphamide.13 The counterpart in
NZB/W mice showed an increased expres-
sion of CXCR4 (a chemokine receptor,
bindind CXCL12, expressed on PCs) and
of Lyn, especially in the interstitium, thus
mirroring B-cell findings in human neph-
ritis.14 On the whole, these data indicate
that the fate and function of PCs in the
kidney result from a subtle equilibrium
between resident cells, stromal-derived
growth factors and the PCs themselves.

TARGETING PCS
Cheng et al15 used a novel model to dem-
onstrate the role of long-lived PCs in
murine LN. They adoptively transferred
NZB/W spleen-derived ASCs (a 70/30%
mixture of short-lived PBs/PCs) into Rag−/−

mice (that lack the B-cell lineage) and fol-
lowed their engraftment in the BM and
the kidneys. They demonstrated: (i) that
adoptively transferred PBs proliferated in
the BM of Rag−/− mice during 2 weeks
before becoming non-dividing long-lived
PCs; (ii) that these long-lived PCs
remained the only surviving transferred
cells; (iii) that they continuously produced
anti-dsDNA antibodies (more in the BM
than in the spleen); (iv) that transferred
mice developed immune complex neph-
ritis and had reduced survival; and (v) that
treatment with cyclophosphamide (a drug
not targeting long-lived non-dividing PCs)
was not efficacious in preventing LN.
Although some methodological issues can
be raised (such as a possible effect of con-
taminating B1 cells also known for their
migratory capacity), the logical conclusion
of these experiments is that long-lived PCs
should be the target of therapy, a goal cur-
rently neither achieved by cytotoxic drugs
nor completely by anti-CD20 blockade.

PERSPECTIVES IN HUMAN NEPHRITIS
Some preliminary evidence suggests that
our armamentarium against long-lived
PCs may well develop in the near future.
First, bortezomib (BTZM), an inhibitor of
the 26S proteasome, was shown to
deplete long-lived PCs in lupus-prone
mice by activation of the unfolded protein
response and to ameliorate survival of
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such strains (NZB/W and MRL/lpr),16

probably through prevention of podocyte
damage and loss.17 Carfilzomib (another
proteasome inhibitor) and BTZM were
found to suppress the production of IFNa
by TLR-activated plasmacytoid DCs, a
purported critical event in the pathogen-
esis of lupus.18 Second, in NZB/W and
MRL/lpr mice, a selective inhibitor of
Janus Kinase 2 ( JAK2), CEP-33779, was
recently found to deplete ASCs and long-
lived PCs defined as CD19-, CD45R/
B2202, CD138hi, CD38hi positive cells,
with concomitant reduction of serum
IL-12, IL-17A, IFNa, IL-1b and TNFa
titres and improved survival.19 20 Third,
the effects of chronic BLyS/BAFF/APRIL
blockade on long-lived PCs are currently
unknown (since expression of the corre-
sponding BR3/TACI/BCMA receptors has
not been studied) but are not excluded by
the fact that CD20 CD138 plasmacytoid
cells are progressively depleted by belimu-
mab therapy.21 Fourth, Bruton tyrosine
kinase inhibitors have been shown to pro-
gressively deplete CD138 PCs in the spleen
of NZB/W nephritic mice.22 Finally, at least
from a theoretical viewpoint, Blimp1
pathway inhibitors could be useful.

CONCLUSION
Type 1–like LN will benefit the most by
targeting long-lived PCs, while we have
no data on whether targeting T cells can
also lead to wipe out PC in kidney tissues.
Targeting of long-lived PCs may become a
goal in the clinic, in particular, in LN,
where relapses are so common (between
25% and 35% of the patients), even years
after the first renal insult,23 likely because
of reactivation of a dormant long-lived
PC located in the BM, the spleen or other
niches, including the kidneys themselves.
In this respect, more attention should be
paid to the persistence of residual PCs in
renal tissue before and after immunosup-
pressive treatment, in order not to miss a
‘PC window of opportunity’. Toxicity
may however be an issue, as targeting of
long-lived PCs will likely not be restricted
to the autoimmune subset. A strict follow-
up of Ig levels in nephritis patients with
low immunoglobulin plasma levels will be
necessary.
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