The risk of myocardial infarction in rheumatoid arthritis and diabetes mellitus: a Danish nationwide cohort study

Jesper Lindhardsen, Ole Ahlehoff, Gunnar Hilmar Gislason, Ole Rintek Madsen, Jonas Bjerring Olesen, Christian Torp-Pedersen, Peter Riis Hansen

ABSTRACT

Objectives To examine in a nationwide cohort whether the risk of myocardial infarction (MI) in patients with rheumatoid arthritis (RA) is comparable to the risk in patients with diabetes mellitus (DM).

Methods The study included the entire Danish population followed from 1 January 1997 until 31 December 2006. Through individual level-linkage of nationwide administrative registers, the authors identified subjects who developed RA and DM. The risk of MI was analysed using multivariable Poisson regression models including data on cardioprotective drugs, comorbidity and socioeconomic status.

Results From a total of 4 311 022 individuals included in the cohort, 10 477 and 130 215 individuals developed RA and DM respectively. The overall incidence rate ratio (IRR) of MI in RA was 1.7 (95% CI 1.5 to 1.9), which was similar to the risk in DM (1.7 (1.6 to 1.8); p=0.64 for difference). The risk was significantly increased in all groups when stratifying on age and gender, with higher RR in younger patients. This was especially pronounced in women <50 years with RA or DM, who were subject to a sixfold increase in RR. The RA-related risk of MI was unaffected by the duration of pharmacological RA treatment and corresponded to the overall risk of MI observed in non-RA subjects, who were on the average 10 years older.

Conclusions RA is associated with the same risk of MI as DM, and the risk of MI in RA patients generally corresponded to the risk in non-RA subjects 10 years older.

INTRODUCTION

Patients suffering from rheumatoid arthritis (RA) face an increased risk of cardiovascular disease (CVD). Several recent studies have shown that the risk of myocardial infarction (MI) is increased in RA with reported RRs of 1.5–2.0 compared to the general population. Traditional cardiovascular risk factors such as hypertension, dyslipidemia, smoking and obesity cannot fully explain the increased risk of MI, and the role of other mechanisms underlying the RA-related risk of CVD remain unclear. These mechanisms include, for example, undertreatment of cardiovascular risk factors in RA patients, adverse effects of pharmacological RA treatment and accelerated atherosclerosis due to inflammatory processes associated with RA. Such mechanisms may also be applicable to other chronic diseases associated with increased risk of CVD, for example, systemic lupus erythematosus, psoriasis and inflammatory bowel disease. Diabetes mellitus is a well-established risk factor for CVD, where specific guidelines for prevention of CVD have been recommended.

From that perspective, it has raised considerable interest, with a cross-sectional and a prospective study of a Dutch cohort of RA and DM patients suggesting that the risk of CVD in individuals with RA is comparable to that of patients with DM. However, in these studies the reported RA and DM cohorts were separated in time by a decade and the studies were not powered to address potential age- and gender-specific risk differences. More insights in this area of research are important to inform discussions on the value of primary prevention of CVD in RA. Therefore, the present study examined the risk of MI in RA and DM patients within the same nationwide, unselected cohort using unique Danish nationwide registries.

METHODS

Study cohort and data sources

The study cohort consisted of all Danish inhabitants alive and aged 16 years or more by 1 January 1997 identified through the Danish Civil Registration System. In Denmark, individual level-linkage of data is made possible by a unique and permanent personal identifier issued at birth, which enabled combination of data from several Danish nationwide registries.

Morbidity was obtained from the National Patient Registry, which contains diagnoses listed according to the International Classification of Diseases (ICD) codes from all hospital admissions (from 1978) and outpatient activities (from 1995) in the form of the 8th revision of the ICD (ICD-8) until 1994 and the 10th revision (ICD-10) thereafter. Dates and institution providing each patient contact were recorded, along with one primary and, if appropriate, one or more secondary diagnoses. Data on medical treatment were obtained from the Danish Register of Medicinal Product Statistics, where all prescriptions dispensed from pharmacies have been recorded from 1995 including information on the Anatomical Therapeutical Chemical (ATC) class, dose, quantity and date of dispensed prescription.

At study baseline (1 January 1997), all subjects were characterised according to concurrent cardiovascular pharmacotherapy defined as dispensed prescriptions during 1996 with β blockers (ATC class C07), angiotensin-converting enzyme inhibitors/angiotensin 2 receptor antagonists (C09), statins (C10A), platelet inhibitors (B01AC), loop diuretics (C03C), vitamin K antagonists (B01AA)
and spironolactone (C03D). To include the effect of comorbidity, Charlson’s comorbidity index was used, modified for use with ICD-10 as previously described. In brief, this index is based on the incidence of 19 prespecified discharge diagnoses 1 year prior to cohort entry. Each of the 19 diagnoses carries a weight from 1 to 6 and the Charlson’s comorbidity score is calculated as the resultant weighted sum. An index of socioeconomic status from 0 to 4 was calculated based on the subject income in the years 1992–1996 standardised by age.

Entry criteria and follow-up period
Subjects with CVD including MI, stroke or coronary revascularisation procedures prior to baseline, as well as subjects with prior RA diagnoses or DM treatment at baseline, were not included in the study cohort.

Subjects were followed until MI, death, emigration or 31 December 2006, whichever came first.

Identification of DM, RA and MI
During the study period, subjects were monitored for the development of RA, DM and MI. RA patients were identified by ICD codes M5-M6 in combination with a dispensed prescription of disease-modifying antirheumatic drugs (DMARDs), that is, methotrexate (ATC classes L01BA01 and L04AX03), sulfasalazine (A07EC01), azathioprine (L04AX01), hydroxychloroquine (P01BA02), gold therapy (M01CB), leflunomide (L04AA13) and cyclosporine (L04AA01), within a year before or after the time of disease-modifying antirheumatic drugs (DMARDs), that is, codes M5-M6 in combination with a dispensed prescription of disease-modifying antirheumatic drugs (DMARDs), that is, methotrexate (ATC classes L01BA01 and L04AX03), sulfasalazine (A07EC01), azathioprine (L04AX01), hydroxychloroquine (P01BA02), gold therapy (M01CB), leflunomide (L04AA13) and cyclosporine (L04AA01), within a year before or after the time of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%. The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%. The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%. The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

The last of diagnosis. This method has previously been validated, yielding sensitivity and positive predictive values of >80%.

Table 1 Baseline characteristics for the study cohort

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>General population</th>
<th>RA</th>
<th>DM</th>
<th>RA + DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women (%)</td>
<td>2,064,304 (51.4)</td>
<td>7011 (70.7)</td>
<td>59,989 (46.3)</td>
<td>337 (60.6)</td>
</tr>
<tr>
<td>Men (%)</td>
<td>1,932,517 (48.6)</td>
<td>2910 (29.3)</td>
<td>69,670 (53.7)</td>
<td>219 (29.4)</td>
</tr>
<tr>
<td>All (%)</td>
<td>3,978,821 (100)</td>
<td>9921 (100)</td>
<td>128,659 (100)</td>
<td>556 (100)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women (%)</td>
<td>47.6 (19.8)</td>
<td>56.2 (15.9)</td>
<td>57.1 (18.0)</td>
<td>61.6 (12.9)</td>
</tr>
<tr>
<td>Men (%)</td>
<td>44.6 (18.0)</td>
<td>56.8 (14.6)</td>
<td>56.4 (14.3)</td>
<td>61.3 (11.7)</td>
</tr>
<tr>
<td>All (%)</td>
<td>46.1 (19.0)</td>
<td>56.4 (15.5)</td>
<td>56.7 (16.1)</td>
<td>61.5 (12.4)</td>
</tr>
<tr>
<td>Charlson’s comorbidity index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women (%)</td>
<td>0.02 (0.23)</td>
<td>0.02 (0.16)</td>
<td>0.04 (0.28)</td>
<td>0.05 (0.33)</td>
</tr>
<tr>
<td>Men (%)</td>
<td>0.02 (0.22)</td>
<td>0.02 (0.16)</td>
<td>0.04 (0.28)</td>
<td>0.03 (0.22)</td>
</tr>
<tr>
<td>All (%)</td>
<td>0.02 (0.22)</td>
<td>0.02 (0.16)</td>
<td>0.04 (0.28)</td>
<td>0.04 (0.29)</td>
</tr>
<tr>
<td>Socioeconomic index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women (%)</td>
<td>1.60 (1.29)</td>
<td>1.48 (1.30)</td>
<td>1.31 (1.26)</td>
<td>1.20 (1.22)</td>
</tr>
<tr>
<td>Men (%)</td>
<td>2.45 (1.40)</td>
<td>2.49 (1.33)</td>
<td>2.27 (1.41)</td>
<td>2.29 (1.39)</td>
</tr>
<tr>
<td>All (%)</td>
<td>2.01 (1.41)</td>
<td>1.78 (1.39)</td>
<td>1.83 (1.43)</td>
<td>1.63 (1.40)</td>
</tr>
<tr>
<td>Baseline cardioprotective therapy (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β blocker (%)</td>
<td>126,636 (3.2)</td>
<td>516 (5.2)</td>
<td>11,212 (8.6)</td>
<td>54 (9.7)</td>
</tr>
<tr>
<td>Statin (%)</td>
<td>17,136 (0.4)</td>
<td>71 (0.7)</td>
<td>1978 (1.5)</td>
<td>9 (1.6)</td>
</tr>
<tr>
<td>ACEI/ARB (%)</td>
<td>88,927 (2.2)</td>
<td>392 (4.0)</td>
<td>10,384 (8.0)</td>
<td>47 (8.5)</td>
</tr>
<tr>
<td>Loop diuretic (%)</td>
<td>106,371 (2.7)</td>
<td>420 (4.2)</td>
<td>9662 (7.4)</td>
<td>58 (10.4)</td>
</tr>
<tr>
<td>Spironolactone (%)</td>
<td>12,247 (0.3)</td>
<td>45 (0.5)</td>
<td>1335 (1.0)</td>
<td>8 (1.4)</td>
</tr>
<tr>
<td>Vitamin K antagonist (%)</td>
<td>17,471 (0.4)</td>
<td>93 (0.9)</td>
<td>1630 (1.3)</td>
<td>15 (2.7)</td>
</tr>
<tr>
<td>Platelet inhibitor (%)</td>
<td>117,116 (2.9)</td>
<td>438 (4.4)</td>
<td>8976 (6.9)</td>
<td>48 (8.6)</td>
</tr>
</tbody>
</table>

Values stated as means (SD) unless otherwise indicated.

ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin 2 receptor blockers; DM, diabetes mellitus; IRR, incidence rate ratio; RA, rheumatoid arthritis.
time, age (overall model) and calendar year (overall and stratified models) were included as timescales.

Conditional logistic regression models were used to obtain odds ratios for RA and DM exposure in the supplementary nested case–control study.

Wald χ^2 tests were used to evaluate difference between parameter estimates within the models. A two-tailed p value less than 0.05 was considered significant and 95% CI were also reported. SAS version 9.1 was used for data management and Stata version 11.0 for statistical analysis.

Ethics
This study was approved by The Danish Data Protection Agency (ref. 2007-41-1667). Retrospective registry studies do not require ethical approval in Denmark and all available data were encrypted to ensure full anonymity. The study was conducted and reported in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations. Authors had full access to the data and take full responsibility for its integrity.

RESULTS
Baseline characteristics
A total of 4,311,022 subjects, aged 16 years or more on 1 January 1997, were identified. Due to prior disease (CVD n=102,229; RA n=19,377; DM n=79,674) and incomplete data entries (n=18,212), 192,065 subjects were excluded from the analysis. During the 10-year study period, 9921 subjects developed RA, 129,659 developed DM and 556 developed both conditions. Baseline characteristics of the study population are summarised in table 1. As expected, the reference population was, in general, younger, healthier and had a higher socioeconomic status than patient groups. Compared to DM patients, RA patients were more often women, used less cardioprotective medications and had less comorbidity, whereas age was similar in the two groups.

Overall risk of MI
The number of MIs, total time at risk, mean follow-up and IRRs are listed in table 2. The mean follow-up in the RA, DM and RA+DM groups were 4.6, 3.9 and 3.0 years respectively. Disregarding baseline differences between groups, the crude incidence rates of MI were higher in RA (+threefold increase), DM (+fourfold increase), and RA and DM (+sixfold increase) compared to the general population.

Poisson regression analysis with adjustment only for age and gender showed a 1.7 (95% CI 1.5 to 1.9) increased IRR of MI in RA patients compared to the general population, which was similar to the IRR of 1.9 (1.8 to 2.0) in DM patients (table 2). In agreement with the distribution of baseline characteristics, the risk estimate in DM patients was reduced to 1.7 (1.6 to 1.8) in the fully adjusted model, which was not different from the risk conferred by RA 1.7 (1.5 to 1.9), $p=0.64$ for difference between risk estimates), whereas the risk in RA patients was unaffected by these adjustments. In patients who suffered from RA and DM, the IRR was 2.6, which roughly equaled the predicted additive risk of the two separate diseases.

Effects of age and gender
When subjects were stratified by gender, the MI risk estimates for RA patients did not differ between women (IRR 1.7 (1.4 to 2.0)) and men (1.6 (1.4 to 1.9); $p=0.73$ for difference), whereas in DM patients, women (2.0 (1.9 to 2.1)) were at higher risk than men (1.5 (1.5 to 1.6); $p=0.001$ for difference).

The gender-stratified and age-stratified analysis demonstrated a significantly higher RR of MI in all age strata for RA and DM patients, with a notable decline in IRR with age (table 3). Among women with RA, the risk of MI in the youngest age group was 5.5 times the risk in the reference group, which was comparable to the 5.9-fold increased RR of MI found in DM patients in this age stratum. Although the RR was markedly raised in women with RA between 50 and 65 years (IRR 1.7), it was significantly lower than for DM patients (IRR 2.6), whereas the risks of MI were fully comparable between RA and DM in the oldest age group of women. The pattern of RR in RA compared to DM was different in men, where the IRRs in the two oldest age groups were comparable, and even tended to be slightly higher in the 50–65 years age group of RA patients compared to same-aged DM patients (IRR 2.0 vs 1.5; $p=0.006$). Although the youngest RA men also had a markedly raised IRR, DM patients in this age stratum had a significantly higher RR (IRR 2.1 vs 4.9; $p=0.02$).

For RA and DM patients the absolute rate difference, that is, the excess number of MIs per 1000 person-years associated with the disease compared to the general population, increased markedly with age and was higher for men than women (table 3).

To ascertain the impact of age on the risk of MI in RA patients, event rates and IRRs were calculated according to 10-year subject age intervals for RA patients and control subjects (figures 1 and 2). The crude rate risks and results from the fully adjusted regression model showed that RA patients had the same, or higher, risk of MI as control subjects, who were on average 10 years older.

Additional analyses
In order to exclude any differential effect between type 1 and type 2 DM patients, the analyses were repeated excluding
patients, that is, their inclusion in the model would invariably lead to underestimation of the impact of DM.

As shown in Table 4, the risk of MI was raised significantly in RA and DM regardless of the time elapsed since initiation of pharmacotherapy (treatment duration). Even though there were small differences in IRRs when risk was stratified according to treatment duration, the risk did not increase with time and no clear trend regarding change in risk with treatment duration was observed.

DISCUSSION

In the current study, the risk of MI in RA patients and DM patients was investigated in an unselected, nationwide cohort followed for a 10-year period. After adjustment for gender, age, calendar year, cardioprotective medication and socioeconomic status, the risk of MI in RA and DM was found to be increased by approximately 70% compared to the general population. Furthermore, the risk of MI in RA patients was similar to the risk of MI in subjects without RA who were 10 years older.

Table 3 Incidence rates, rate differences and adjusted incidence rate ratios (IRR) of myocardial infarction (MI)

<table>
<thead>
<tr>
<th>General population</th>
<th>Rheumatoid arthritis</th>
<th>Diabetes mellitus</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI cases (n)</td>
<td>Time at risk (1000 py)</td>
<td>Incidence Rate</td>
</tr>
<tr>
<td>Women (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 50</td>
<td>2531</td>
<td>12 033</td>
</tr>
<tr>
<td>50–65</td>
<td>6777</td>
<td>4113</td>
</tr>
<tr>
<td>More than 65</td>
<td>20 040</td>
<td>3002</td>
</tr>
<tr>
<td>Men (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 50</td>
<td>9448</td>
<td>12 371</td>
</tr>
<tr>
<td>50–65</td>
<td>17 006</td>
<td>3779</td>
</tr>
<tr>
<td>More than 65</td>
<td>20 068</td>
<td>1842</td>
</tr>
</tbody>
</table>

Results from fully adjusted Poisson regression analysis (stratified by gender and age tertiles). Incidence rates and rate differences are given as MIs per 1000 person-years. Py, person-years.
subjects were well characterised, RA patients aged younger than 50 and older than 75 years were not included, and RA and DM cohorts were separated in time by a decade. Using the entirely different approach of nationwide registry data analysis, the risk of a single validated end point (MI) in a very high number of patients was evaluated, where selection bias and effects of calendar time were markedly reduced. The present results, therefore, corroborate and clearly expand the existing evidence of a heightened risk of MI in RA patients that is of comparable magnitude to the risk of MI in subjects with DM.

Cardiovascular risk management in patients with RA was recently addressed by the European League Against Rheumatism (EULAR), which in addition to aggressive control of RA activity, recommended annual cardiovascular risk assessment and treatment of identified risk factors according to national guidelines, with adaptation of the risk score models by use of a 1.5 multiplication factor in RA patients with two or more of three criteria, that is, RA duration ≥10 years, rheumatoid factor and/or anticyclic citrullinated peptide positivity, and presence of certain extra-articular RA manifestations. The present study indicates that this approach may be insufficient in young women with RA, who are subject to a disproportionate CVD risk increase. The suggestion of RA duration ≥10 years as a suitable criterion for increased CVD risk is also debatable, as the risk of MI in the present study was increased already within the first 3 years of treatment and remained elevated during the observation period of up to 10 years. This phenomenon has also been observed in other cohorts, for example, a Swedish RA inception cohort, where MI risk estimates were the same 1–4 years and 4–12 years from diagnosis. The result does not exclude the possibility of a further increase in CVD risk after 5–10 years of RA, as suggested by the observed differences in risk estimates derived from inception cohorts and established disease cohort, although more intensive therapy aimed at inflammation control in recent years is likely to have reduced the CVD risk increase conferred by RA duration per se. Along this line, it is also reasonable to expect that the risk of CVD increases before the time of clinical RA diagnosis.

The current data suggest that a reasonable approach to risk assessment in RA other than use of a 1.5 multiplication factor in selected patients as indicated above, may be to add 10 years to the age of the patient and then use the CVD risk score derived from the general population. Indeed, Kremers and coworkers also recently reported that the absolute CVD risk in RA patients was similar to that of non-RA-subjects who were 5–10 years older. Other patient characteristics, for example, gender, age at disease onset, and markers of disease severity should probably be incorporated in a RA-specific cardiovascular risk prediction model, and development of such a model, its prospective validation and assessment of primary and secondary prevention strategies for cardiovascular disease in RA patients, remain at the centre stage in this area of research.

There are several important limitations to consider when interpreting the present findings. The identification of RA patients relied on dispensed prescriptions and diagnosis rather than the accepted 1987 American College of Rheumatology criteria. Indeed, this search strategy may have excluded RA patients with putatively ‘mild’ disease if they were not treated with DMARDs and/or did not attend a hospital clinic. In view of the preferred early introduction of DMARDs and specialist consult advocated by prevailing RA treatment guidelines, this was probably a relatively low number of patients and is unlikely to have influenced the results significantly. It was also not possible to identify DM patients on diet-only treatment, because the use of glucose-lowering drugs was used as proxy for DM.

Table 4: Risk of myocardial infarction (MI) associated with rheumatoid arthritis and diabetes mellitus. Results from conditional logistic regression analysis in nested case–control study

<table>
<thead>
<tr>
<th></th>
<th>MI cases</th>
<th>Controls</th>
<th>OR* (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid arthritis</td>
<td>n=80 104</td>
<td>n=318 296</td>
<td></td>
</tr>
<tr>
<td>Treatment duration strata (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–3</td>
<td>265 (0.33%)</td>
<td>603 (0.19%)</td>
<td>1.9 (1.6 to 2.3)</td>
</tr>
<tr>
<td>3–6</td>
<td>79 (0.10%)</td>
<td>216 (0.06%)</td>
<td>1.7 (1.3 to 2.2)</td>
</tr>
<tr>
<td>More than 6</td>
<td>105 (0.13%)</td>
<td>207 (0.07%)</td>
<td>2.0 (1.4 to 2.9)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>n=948 4.93%</td>
<td>n=463 2.66%</td>
<td></td>
</tr>
<tr>
<td>Treatment duration strata (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–3</td>
<td>2 260 (2.82%)</td>
<td>4 743 (1.49%)</td>
<td>2.1 (1.6 to 2.7)</td>
</tr>
<tr>
<td>3–6</td>
<td>1 208 (1.51%)</td>
<td>2 685 (0.84%)</td>
<td>1.9 (1.8 to 2.1)</td>
</tr>
<tr>
<td>More than 6</td>
<td>480 (0.60%)</td>
<td>1035 (0.33%)</td>
<td>1.8 (1.6 to 2.1)</td>
</tr>
</tbody>
</table>

Values stated are number of MIs (proportion of MIs out of the total number of case or control MIs).

*Adjusted for comorbidity and socioeconomic status (matched on gender and age).
Thus in their strictest sense, the present results are only valid for RA patients and DM patients commencing medical treatment. Although this registry-based approach yielded a very high number of unselected study participants, information was lacking about classical CVD risk factors and some of these, for example, smoking, dyslipidemia and hypertension, may be more prevalent in RA and DM than in the general population.36,37 Even though these risk factors to some extent were considered in the analysis by determination of baseline comorbidity and cardioprotective medication, it cannot be ruled out that the inclusion of these clinical variables would have changed the risk estimates. As smoking status was a potentially important factor that could not be determined, the proportion of RA and DM patients with prior admissions for chronic obstructive pulmonary disease at baseline was assessed and only discrete differences were found, which suggests that smoking may not be an important confounder for the comparable risk of MI in the two diseases (not shown). Also, the contribution of classical risk factors to CVD in RA patients has been estimated to account for approximately half of the risk increase, and as DM patients have a high prevalence of risk factors that contribute to a sizable proportion of CVD risk, it is speculated that inclusion of such variables in the analysis is not likely to considerably decrease the CVD risk estimates for RA patients relative to DM patients.30,37

In conclusion, this nationwide study of approximately 10 000 RA patients and 150 000 DM patients demonstrated that the risk of MI was similar in RA and DM. Furthermore, it was shown that RA patients had the same risk of MI as control subjects 10 years older, and that the risk of MI remained constant over time after RA treatment commenced. The results corroborate and expand previous findings in this area of research and indicate that patients with RA should be considered for more aggressive primary CVD prevention. Prospective studies of cardiovascular risk management strategies in RA patients are warranted.

Funding
The study was supported by an unrestricted grant from the Danish Rheumatism Association.

Competing interests
None.

Ethics approval
This study was approved by The Danish Data Protection Agency.

Provenance and peer review
Not commissioned; externally peer reviewed.

REFERENCES

The risk of myocardial infarction in rheumatoid arthritis and diabetes mellitus: a Danish nationwide cohort study

Jesper Lindhardsen, Ole Ahlehoff, Gunnar Hilmar Gislason, Ole Rintek Madsen, Jonas Bjerring Olesen, Christian Torp-Pedersen and Peter Riis Hansen

Ann Rheum Dis 2011 70: 929-934 originally published online March 9, 2011
doi: 10.1136/ard.2010.143396

Updated information and services can be found at:
http://ard.bmj.com/content/70/6/929

These include:

References
This article cites 35 articles, 13 of which you can access for free at:
http://ard.bmj.com/content/70/6/929#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Editor's choice (158)
Connective tissue disease (4253)
Degenerative joint disease (4641)
Immunology (including allergy) (5144)
Musculoskeletal syndromes (4951)
Rheumatoid arthritis (3258)
Epidemiology (1367)
Drugs: musculoskeletal and joint diseases (700)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/