Do the treatment with glucocorticoids and/or the disease itself drive the impairment in glucose metabolism in patients with rheumatoid arthritis?

Frank Buttgereit

Opinions on the value of glucocorticoids (GCs) have fluctuated between euphoric acceptance and outright rejection. This ambivalence in opinions arose because of their important clinical effects, on one hand, and their potential risks, on the other hand. It seems, however, that these important drugs have now found their correct place in rheumatology (and other special areas in medicine). The current view on these drugs is that they are indispensable; however, they should be administered as much as necessary but as little as possible.

THE CURRENT ROLE OF GCs IN RHEUMATIC DISEASES

Without any doubt, GCs at higher dosages are needed to terminate flares and/or to reduce the activity of rheumatic diseases. However, this ‘emergency’ usage represents only one option for successfully administering these drugs since many patients are more or less continuously treated with ‘maintenance treatment’.

For example, when looking at rheumatoid arthritis (RA), it is obvious that, very often, lower dosages of GCs are given in combination with conventional or biological disease-modifying anti-rheumatic drugs (DMARDs) (and, of course, other drugs such as non-steroidal anti-inflammatory drugs or analgesics). This therapeutic approach has the following rationale: a sensible combination of drugs with different modes of action ideally results in additive or even synergistic effects, while potential adverse effects remain at a level associated with the dose of each component. For GC treatment, this means that the more effective the treatment is with DMARDs, the lower can be the GC dosages. Consequently, less pronounced adverse effects are induced by these drugs (figure 1).

Given the widespread and successful usage of biological DMARDs, what does this mean in terms of actual GC dosages administered concomitantly? We have recently presented a report of a detailed time course of GC intake under tumour necrosis factor α inhibitor (TNFαi) treatment with a long duration of follow-up. In this work, we have shown that in a cohort of 110 patients with RA, disease activity significantly decreased after TNFαi initiation. As a consequence, GC doses could be significantly reduced from 7.5 (5–12.5) mg/day to 2.5 (0–5) mg/day. In more detail, GC doses were reduced in 81 patients and even stopped in 28 patients. These results highlight the effectiveness of TNFαi in allowing a reduction of GCs to low doses in the majority of patients based on a significant reduction of disease activity. Of note, this effect was observed as early as within the first 3 months and persisted up to the end of the observation after 5 years. At the same time, however, these results illustrate that GCs still are and obviously will be indispensable drugs but, fortunately, to a lesser extent and at lower dosages necessary than in the past.

There are two other lines of evidence that support the statement that low-dose GC treatment is still a cornerstone of RA treatment. First, a random search for five RA trials published in recent months in both The Annals of Rheumatic Diseases and Arthritis and Rheumatism demonstrated that more than 50% of patients with RA who are included in phase II to phase IV trials investigating biological drugs are concomitantly treated with GCs: atacicept (55–67%), rituximab (39–48%), tocilizumab (62–70%) and golimumab (50–55%). In the June issue of Nature Reviews Rheumatology, it has been stated very similarly, ‘… the percentage of patients who received concomitant prednisone treatment ranged from 34% to 93% across the studies, and varied across biologic drugs (abatacept, 74.4%; golimumab, 67.9%; infliximab, 60.6%; certolizumab, 57.5%; rituximab, 57.5%; etanercept, 54.4%; tocilizumab, 52.2%; adalimumab, 50.4%).’

Second, also when looking at ‘normal daily clinical practice’ outside the ‘study world’, similar numbers apply. Very recently, Neovius et al reported on the nationwide prevalence of RA and the penetration of disease-modifying drugs in Sweden. They found that 28 698 out of 58 102 patients (ie, patients with RA who were still alive in 2008) received GC treatment, corresponding to a 49% GC exposure.

For Germany, actual data on GC treatment in patients with RA are shown in figure 2. These data were obtained from the national database of the German Collaborative Arthritis Centres (internal report data for 2009). In 2009, 17 rheumatological units (university departments, departments of rheumatology at general hospitals) reported about 10 000 patients with RA and the dosages administered were either given alone or in combination with biological drugs.

Figure 1 Drug combination in rheumatoid arthritis treatment. A sensible combination of drugs with different modes of action ideally results in additive or even synergistic effects, while potential adverse effects remain at a level associated with the dose of each component.

Correspondence to Professor Frank Buttgereit, Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin 10117, Germany; frank.buttgereit@charite.de
Glucocorticoid (GC) treatment in rheumatoid arthritis (RA) (Germany). The percentage of GC-treated patients with RA is fairly constant over the years at about 56%, but with an increase in the use of GC dosages of ≤7.5 mg/day (dosages refer to prednisone equivalent per day). Data were adapted from the national database of the German Collaborative Arthritis Centres (internal report data for 2009).

Figure 2

![Image of a graph showing the percentage of GC-treated patients with RA over the years, with dosages of >7.5 mg/d and ≤7.5 mg/d.](image-url)

The latter observation is, however, not easy to interpret. First, as discussed by the authors, confounding by indication has to be taken into account. Second, there is a complicated interplay of three mechanisms that influence glucose metabolism: (1) the RA-induced pro-inflammatory state negatively impacts on glucose metabolism; (2) GC downregulates disease activity, which in turn weakens the negative impact of the disease on glucose metabolism; and (3) GC itself impairs glucose metabolism, as outlined above.

GC EFFECTS ON THE BONE AND ON THE CARDIOVASCULAR SYSTEM

Similar considerations apply to GC effects on the bone and on the cardiovascular system, where we also see this ‘magical triangle’ or the ‘Janus-head-like behaviour of GCs’. For example, accelerated bone loss in RA includes radiological periarticular osteoporosis and joint erosions. GCs at low doses have been shown to reduce the rate of the radiographic progression of the disease and the extent of disease-related periarticular osteoporosis. However, these facts are beyond any doubt, we sometimes forget that the disease under GC treatment may per se impair glucose metabolism. This important question has been addressed thoroughly by Hoes et al. They measured glucose tolerance, insulin sensitivity and β cell function in patients with RA who were treated with or without low to medium doses of GCs. One of their take-home messages is that GC-using and GC-naive patients with RA had comparable metabolic parameters and decreased insulin sensitivity and β cell function in comparison with healthy controls. In other words, the disease itself (i.e., the pro-inflammatory state induced by the disease) does impair the metabolic state in patients with RA, but as expected, the GC treatment also does negatively interfere with glucose metabolism. The authors report cumulative GC doses as having a negative impact on glucose tolerance state and insulin sensitivity.
prolonged GC treatment per se does result in rapid and profound reductions in bone mineral density (especially within the first months of treatment).

The second example refers to GC effects on the cardiovascular system. Chronic inflammatory diseases increase the risk of cardiovascular diseases. The use of TNF antagonists has been recently shown to be associated with a reduced risk of cardiovascular events in patients with RA. GCs may also lower this inflammation-mediated risk (months of treatment).

CONCLUSION

In conclusion, how to disentangle the unwanted consequences of the RA disease itself from the consequences of its treatment with GCs is still a matter of debate. This is true for glucose metabolism and also for the bone and the cardiovascular system. The work by Hoes et al represents an important contribution in this regard since their results considerably enhance our knowledge of glucose metabolism in patients with chronic RA who are treated with or without GCs. Nevertheless, the question on how harmful long-term GCs are with regard to their capability to exert diabetogenic effects on patients with RA needs further assessment in well-designed, longitudinal, randomised trials.

Competing interests None.

Provenance and peer review Commissioned; externally peer reviewed.

Accepted 2 August 2011
Published Online First 9 September 2011

Ann Rheum Dis 2011; 70: 1881–1893
doi:10.1136/annrheumdis-2011-200388

REFERENCES

Do the treatment with glucocorticoids and/or the disease itself drive the impairment in glucose metabolism in patients with rheumatoid arthritis?

Frank Buttgereit

Ann Rheum Dis 2011 70: 1881-1883 originally published online September 9, 2011
doi: 10.1136/annrheumdis-2011-200388

Updated information and services can be found at:
http://ard.bmj.com/content/70/11/1881

These include:

References

This article cites 14 articles, 6 of which you can access for free at:
http://ard.bmj.com/content/70/11/1881#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Connective tissue disease (4253)
- Degenerative joint disease (4641)
- Immunology (including allergy) (5144)
- Musculoskeletal syndromes (4951)
- Rheumatoid arthritis (3258)
- Drugs: musculoskeletal and joint diseases (700)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/