Cigarette smoking and the risk of systemic lupus erythematosus and rheumatoid arthritis

D S Majka, V M Holers

Smoking may affect the disease course in SLE and patients should be counselled to stop

In this issue of the Annals, Freemer et al report an association between smoking and dsDNA autoantibody production in systemic lupus erythematosus (SLE). The authors note that exposure to tobacco smoke has previously been associated with several autoimmune diseases, including rheumatoid arthritis (RA) and SLE. In RA, cigarette smoking has been associated with rheumatoid factor (RF) positive but not RF negative disease when these two groups of subjects were evaluated separately. Likewise, smoking has been associated with anti-cyclic citrullinated antibody (anti-CCP) positive but not anti-CCP negative RA. In affected subjects, exposure to tobacco smoke has also been associated with several measures of disease severity such as the presence of radiographic erosions, nodules, pulmonary disease, RF, and anti-CCP antibodies. A cumulative dose of exposure has been associated with a higher incidence and prevalence of RA as well as RF and anti-CCP positivity; in studies evaluating intensity and duration separately, it appears that duration is most important. Smoking has been identified as a risk factor for seropositive RA incidence, and a few studies have even identified an association between cigarette smoking and RF positivity in subjects without RA, supporting a role for this exposure very early during the development of clinical disease. In this regard, it has been proposed that exposure to tobacco may trigger RF production, thus contributing to the clinical onset of RA.

SLE DEVELOPMENT AND CIGARETTE SMOKING

While tobacco exposure has been causally linked to RA, the relationship between the development of SLE and cigarette smoking is less clear. A recent meta-analysis identified a modest association between the development of SLE and current, but not former smoking (odds ratio (OR) = 1.50, 95% confidence interval (CI) 1.09 to 2.08). One limitation of that analysis is that the majority of the studies included did not have statistically significant associations and one outlying study had a high point estimate for the relationship (OR = 6.7) in a predominately Hispanic population. Furthermore, in two studies examining the relationship between smoking and incident SLE, statistically significant associations were not identified. Nevertheless, the previous identification in affected subjects of associations between smoking and severity of SLE may indicate that a relationship exists between smoking and SLE once clinical disease is established. For example, Ward and Studenski identified an association between SLE and progression of lupus nephritis to end stage renal disease. Additionally, smokers were found to have significantly higher Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores and a higher odds of thrombotic events.

As in the analysis of RA related autoantibodies, studies examining the association between tobacco exposure and presence of autoantibodies in clinically unaffected subjects are limited. One previous study found an increased prevalence of antinuclear antibodies (ANA) in smokers from a general population cohort, while a recent small study found a negative correlation between smoking and IgG anti-DNA antibodies in subjects with SLE.

With this background, the investigations undertaken by Freemer et al were warranted and their findings are a useful addition to this area of investigation. They found that current versus never smoking is associated with the presence of autoantibodies to double stranded DNA (dsDNA) (OR = 4.0, 95% CI 1.6 to 10.4) as was current versus former smoking (OR = 3.0, 95% CI 1.3 to 7.1). The OR for the association of ever smoking with dsDNA positivity was 1.5, and they found no relationship between dsDNA status and the duration of smoking in former smokers. These results are consistent with the meta-analysis of Costenbader et al showing that current smoking rather than former smoking is most important in risk assessment for SLE development.

“Current smoking rather than former smoking is a greater risk factor for development of SLE”

Potential pitfalls of this study are relatively few and are mainly due to the inherent limitations of a case-control study. For example, smoking classification at the time of dsDNA testing may not be accurate given that it was collected by chart review. In the ideal setting, serum or urinary cotinine levels would provide a more accurate estimate of subjects’ smoking status. Additionally, the magnitude of the association between smoking and dsDNA may have been attenuated by drug treatment for SLE, given that dsDNA is a marker of disease activity in SLE. In addition, the sample size limited the authors’ ability to assess the relationship in different racial and ethnic groups. Such an assessment might be useful given that the point estimate for the association between tobacco and dsDNA was quite high (OR = 6.7) in a predominately Hispanic cohort.

Finally, as with any study evaluating SLE development and severity, as well as cigarette exposure, adjustment for socioeconomic status is also important.

POSSIBLE MECHANISMS FOR ASSOCIATION BETWEEN CIGARETTE SMOKING, SLE, AND RA

What is the mechanism for the identified associations between cigarette smoking and autoimmune connective tissue diseases? The molecular mechanisms causing the association between smoking, RA, and severity in RA have not been determined. However, several plausible hypotheses have been presented. Genetic susceptibility certainly may have a role, with the recent determination that a null polymorphism in the glutathione S-transferase (GST) M1 locus affects the association between RF and smoking in subjects with RA. The GST enzymes are believed to play an important part in detoxifying reactive oxygen species and, therefore, might influence the ability to detoxify chemicals in cigarette smoke. Additionally, another gene-environment interaction has been proposed, in which smoking might cause a modification of potential autoantigens being recognised by T cells that are restricted by major histocompatibility complex (MHC) antigens carrying the shared epitope. The authors suggest that smoking induces peptide deimination which leads to...
anti-CCP positive RA in subjects who carry the shared epitope. In addition, it has been shown that smoking increases Fas expression in B lymphocytes and CD4+ T lymphocytes. Thus, smoking might lead to increased apoptosis, causing exposure to intracellular citrullinated antigens with eventual breakdown of tolerance and induction of RA related autoimmunity, such as anti-CCP and RF production.

For SLE, one very well supported current hypothesis about the nature of pathogenic mechanisms in the disease proposes that ineffective clearance of apoptotic cells due to genetic or acquired deficiencies promotes the loss of self tolerance to nuclear antigens and subsequent B and T cell reactivity. Given that cigarette smoke is associated with an influx of short lived apoptosis-prone neutrophils into the lung as well as a decreased ability to clear these cells through phagocytosis by macrophages, the generation of anti-dsDNA may be indirect and related to these immunoregulatory effects of tobacco exposure. In this setting, in genetically predisposed subjects with a smoking related decreased ability to clear apoptotic cells, the excess levels of exposed intracellular antigens might lead to a breakdown in tolerance and production of autoantibodies, such as those to dsDNA.

Freemert al. propose that the association between dsDNA and smoking is explained by the formation of DNA adducts with resultant autoantibodies. This hypothesis is plausible, but to date, they have a half life of only 9–13 weeks. Furthermore, studies demonstrating an association between smoking and ANA in subjects without lupus would have the added benefit of demonstrating an association between smoking and autoantibodies to dsDNA which is independent of disease activity. Mechanistic studies in animals would also help to clarify this area.

Finally, smoking is a common habit that is potentially modifiable. Because autoantibodies to dsDNA may affect disease course in SLE, smokers with SLE should be counselled to stop smoking. This is perhaps the most clinically relevant point to be gained from this article.

ACKNOWLEDGEMENTS

These studies were supported by K12 RR017707 and the Smyth Professorship in Rheumatology. Ann Rheum Dis 2006;65:561–563. doi: 10.1136/ard.2005.046052

Authors’ affiliations
D S Majka, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
V M Holers, Division of Rheumatology, University of Colorado at Denver and Health Sciences Center, Denver, CO, USA

Correspondence to: Dr D S Majka, Northwestern University Feinberg School of Medicine, Division of Rheumatology, 450 ipilton Pavilion, 220 East Huron St, Chicago, IL 60611, USA; d.majka@northwestern.edu

Accepted 19 January 2006

Competing Interests: None

REFERENCES
XXVIII. Factors predictive of thrombotic events.

bmjupdates+

bmjupdates+ is a unique and free alerting service, designed to keep you up to date with the medical literature that is truly important to your practice.

bmjupdates+ will alert you to important new research and will provide you with the best new evidence concerning important advances in health care, tailored to your medical interests and time demands.

Where does the information come from?

bmjupdates+ applies an expert critical appraisal filter to over 100 top medical journals. A panel of over 2000 physicians find the few ‘must read’ studies for each area of clinical interest.

Sign up to receive your tailored email alerts, searching access and more...

www.bmjupdates.com
Cigarette smoking and the risk of systemic lupus erythematosus and rheumatoid arthritis

D S Majka and V M Holers

Ann Rheum Dis 2006 65: 561-563
doi: 10.1136/ard.2005.046052

Updated information and services can be found at:
http://ard.bmj.com/content/65/5/561

References

This article cites 29 articles, 8 of which you can access for free at:
http://ard.bmj.com/content/65/5/561#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Immunology (including allergy) (5144)
- Connective tissue disease (4253)
- Systemic lupus erythematosus (571)
- Degenerative joint disease (4641)
- Musculoskeletal syndromes (4951)
- Rheumatoid arthritis (3258)
- Renal medicine (204)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/