Rapid multifocal chondrolysis after liver transplantation in four patients

J Taillardier, M Alemanni, D Samuel, H Bismuth, F Liote

Background: Favourable clinical outcomes achieved with liver transplantation may be jeopardised by corticosteroid-induced osteoarticular complications, such as osteoporosis or aseptic avascular necrosis.

Case report: A previously unreported joint complication in liver transplant recipients is described.

Methods: Retrospective study of liver transplant recipients in whom destructive joint disease developed, identified among 330 symptomatic patients out of a total of 1260 managed over a 15 year period (November 1984-January 2000) in a university based liver transplantation centre.

Results: In four patients (23–56 years), rapid chondrolysis developed 2–12 years after transplantation in more than three weightbearing or non-weightbearing joints of radiological features of avascular osteonecrosis, evidence of infection, or defined inflammatory arthritis. Pathological examination of five hip joints and one knee joint found no evidence of infection or inflammation. Six joint replacement procedures were performed successfully in three patients.

Conclusion: Clinicians managing liver transplant recipients, and perhaps recipients of other organs, should be aware that rapid chondrolysis may develop. The pathogenesis of this rare complication is unclear.
both knees and of the glenohumeral joints (fig 2). THR was done on the left side in December 1998 and on the right side 1 year later. Pathological examination showed fibrosis of the capsule and mild hyperplasia of the synovium. The cartilage had almost completely disappeared in the loadbearing area, and the subchondral bone was thin. No evidence of infection or of a definite inflammatory process was found. In November 2000, total knee replacement was performed on the left; the surgical specimens showed gross degenerative lesions of the hyaline cartilage with fissuring and laminar dissection as seen in laminar inflammatory hip disease.

Case 4

A 30 year old female patient with sclerosing cholangitis received a liver transplant in 1986. In February 1998 she reported use related pain in the left knee, where there was a small effusion. A radiograph of the pelvis was normal, but incipient joint space narrowing was visible in the medial compartment of the left knee. In May 1999 she had pain in both knees and ankles with marked motion range limitation, most notably in the right hip. Radiographs showed severe joint space narrowing in the right hip and medial compartment of the left knee, as well as marked involvement of both tibiotalar joints. Bone scan showed increased uptake in these four joints. Laboratory tests were unremarkable. THR was done on the right side in January 2001. Pathological examination showed OA lesions. The surface cartilage varied in thickness and showed several fissures; moderate osteoporosis was present in the underlying trabecular bone.

DISCUSSION

Multifocal rapid chondrolysis occurred in these four patients 2–12 years after LT, with three to six weightbearing or non-weightbearing joints affected in each patient (table 1). All four patients met the radiological criteria for rapid chondrolysis defined for the hip: 50% or greater decrease in joint space width within 1 year; total joint space obliteration within 1–3 years; global superior polar narrowing, with or without superolateral or medial predominance, and absence of additional abnormalities other than moderate osteoporosis.

Several systemic or local diseases may result in severe joint destruction, including septic arthritis, inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis, or familial Mediterranean fever), trauma, neurological disease, CPPD deposition disease, hydroxyapatite associated arthritis, ochronosis, haemochromatosis, and haemodialysis, and AVN related OA. In some cases, rapidly destructive joint disease occurs in the absence of identifiable causative factors. Thus, rapidly destructive OA of the hip can occur as an idiopathic condition, typically in women around 60 years of age, with
overweight and joint overuse being predisposing factors. In our patients, no evidence supporting any of these causes of chondrolysis was found by imaging studies or pathological examination. In particular, there were no radiological signs of AVN or insufficiency fractures of the femoral head. AVN was of special concern as it is extremely common among LT recipients, with, however, wide differences according to the nature and duration of the underlying liver disease. None of our patients had evidence of hip dysplasia or a family history of OA.

Importantly, in addition to hip and knee chondrolysis, shoulder destruction occurred in two patients. The shoulder joint is rarely affected by destructive arthropathies. No history of acute episodes or radiological features suggesting rotator cuff damage or apatite related destructive arthropathy ("Milwaukee shoulder") was collected. Furthermore, this last condition occurs chiefly in elderly women. The involvement of both weightbearing and non-weightbearing joints in these patients supports a systemic cause for the chondrolysis.

Several non-steroidal anti-inflammatory drugs have been reported to accelerate joint destruction. However, none of our patients took non-steroidal anti-inflammatory drugs after LT. Their only treatment was a conventional immunosuppressive regimen after transplantation, including azathioprine, ciclosporin A, and corticosteroids, which have no proven deleterious effects on cartilage.

As reported by Yamamoto and Bullough, microfractures due to subchondral bone insufficiency in the femoral head related to corticosteroid-induced osteoporosis may lead to rapid chondrolysis. No microfractures were seen in our patients by imaging studies or by pathological examination of operative specimens, although mild osteopenia was noted in the femoral heads. Corticosteroid-induced bone loss may, however, act as a predisposing factor. Pathological findings were reminiscent of laminar inflammatory hip disease in one of our patients (case 3), who may have had a condition similar to acute idiopathic chondrolysis of adolescence, which has been ascribed to an autoimmune mechanism. In this condition, however, the joint narrowing is usually concentric and is accompanied by acetalubar protrusion, which was not the case in any of our patients. Of interest, three out of four patients had autoimmune liver diseases but no definite inflammatory arthritis.

Thus, the unusual chondrolytic process in our patients remains unexplained. Conceivably, metalloproteinase (MMP) activation or an imbalance affecting intra-articular degradation/repair processes may be involved. Masuhara et al found that serum and plasma levels of MMP-3 and MMP-9 were significantly increased in patients with rapidly destructive hip OA. Finally, a role for autoimmune liver diseases or side effects of immunosuppressive drugs cannot be ruled out. However, to the best of our knowledge, this pattern of accelerated joint destruction has not been described in association with other organ transplantations. The rapid and multifocal chondrolysis in our four patients was probably multifactorial. Further investigations of this condition are in order.

Authors’ affiliations
J Taillandier, M Alemanni, Service de Gérontologie et Rédaptation Fonctionnelle, Hôpital Paul Brousse, Assistance Publique-Hôpitaux de Paris (AP-HP), 94800 Villejuif, France
D Samuel, H Bismuth, Centre Hépatobiliaire, Hôpital Paul Brousse, AP-HP & Université Paris Sud, 94800 Villejuif, France
F Liote, Fédération de Rhumatologie, INSERM U606, Hôpital Lariboisière, AP-HP & Université Paris VII, 75010 Paris, France
There is no conflict of interest with this clinical study

Correspondence to: Professeur F Liote, Centre Viggo Petersen, Hôpital Lariboisière, 2, rue Ambroise Paré, 75010 PARIS; frederic.liote@aphp.fr

Accepted 2 June 2005

REFERENCES

Rapid multifocal chondrolysis after liver transplantation in four patients

J Taillandier, M Alemanni, D Samuel, H Bismuth and F Lioté

Ann Rheum Dis 2006 65: 118-120
doi: 10.1136/ard.2004.034207

Updated information and services can be found at:
http://ard.bmj.com/content/65/1/118

These include:

References
This article cites 13 articles, 0 of which you can access for free at:
http://ard.bmj.com/content/65/1/118#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Immunology (including allergy) (5144)
- Calcium and bone (725)
- Musculoskeletal syndromes (4951)
- Degenerative joint disease (4641)
- Inflammation (1251)
- Osteoporosis (137)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/