Proton magnetic resonance spectroscopy may predict future brain lesions in SLE patients: a functional multi-imaging approach and follow up

G Castellino, M Govoni, M Padovan, P Colamussi, M Borrelli, F Trotta

Objective: To determine whether single photon emission tomography (SPECT) and magnetic resonance spectroscopy (1H-MRS) can predict the appearance of new lesions in systemic lupus erythematosus (SLE), detectable by magnetic resonance imaging (MRI).

Methods: 99mTc-HMPAO-SPECT, brain MRI, and 1H-MRS were done in eight women with SLE (mean age 31.8 years; disease duration 5.5 years). NAA/Cho, NAA/Cr, and Cho/Cr ratios were assessed in hypoperfused and normoperfused areas detected by SPECT that were normal on MRI examination. Reference values were obtained in 20 normal healthy controls. In five patients, MRI was repeated four to six years after the first evaluation.

Results: Mean NAA/Cho and Cho/Cr ratios in hypoperfused and normoperfused frontal areas were, respectively, lower and higher than control. There were no differences in NAA/Cr ratios. Mean Cho/Cr ratios were increased in hypoperfused vs normoperfused brain areas (mean (SD): 1.43 (0.27) v 1.00 (0.07); p < 0.023). NAA/Cr ratios were not altered (2.18 (0.30) v 1.99 (0.28); p = 0.381). Three of five patients who had a second MRI had new lesions in areas previously abnormal on MRS and SPECT but normal on first MRI. One patient with positive MRI, SPECT, and MRS showed an increase in the number of MRI lesions; one patient with negative MRI, SPECT, and MRS did not show any new lesions.

Conclusions: Abnormalities reflecting altered perfusion or neuronal-chemical changes can be demonstrated by functional imaging techniques even in the absence of morphological lesions detectable by MRI. The abnormal areas identified by SPECT and MRS may predict future parenchymal damage.
images were carried out using a computer system (micro acquired. Data storage and reconstruction of transverse crystal, was 17 mm. Approximately eight million counts were expressed as FWHM (full width half maximum) at the centre rotation was 20 cm. The spatial resolution of the system, out twice in random order, according to Chang tion of SPECT images obtained in each patient was carried lower threshold of 0%.

Transaxial slices 2 pixels thick (pixel size = 6.2 mm) were reconstructed. The transaxial slices were normalised to the matrix. Neither scatter nor attenuation correction was made.

Amersham International (Amersham, UK), prepared accord-
ing to the manufacturer’s instructions and used within five minutes of labelling. Data were acquired in a 64×64 matrix over a 360° rotation at 6° intervals. The average radius of rotation was 20 cm. The spatial resolution of the system, expressed as FWHM (full width half maximum) at the centre of the field of view and at a depth of 20 cm from the camera crystal, was 17 mm. Approximately eight million counts were acquired. Data storage and reconstruction of transverse images were carried out using a computer system (micro Delta-Max Delta) coupled to the gamma camera on a 64×64 matrix. Neither scatter nor attenuation correction was made. Transaxial slices 2 pixels thick (pixel size = 6.2 mm) were reconstructed. The transaxial slices were normalised to the maximum pixel count and displayed on a colour scale with a lower threshold of 0%.

To identify areas of abnormal perfusion, visual interpreta-
tion of SPECT images obtained in each patient was carried out twice in random order, according to Chang et al., evaluating agreement between two independent and experi-
enced observers blind to the clinical picture. In case of divergence between the two observers a consensus was reached after discussion. Abnormal findings consisted of heterogeneous regional cerebral blood flow (rCBF) with regions of hypoperfusion or evident asymmetry on at least two consecutive slices detected by each of the two observers. Hypoperfused areas or asymmetry were assessed, comparing the amount and homogeneity of tracer uptake with adjacent or contralateral corresponding areas of the brain, or both. Conversely, normal findings included homogeneous rCBF in the grey matter of the cortex and basal ganglia without regions of hypoperfusion or visible asymmetry. This type of subjective evaluation has proved to be accurate for assessing both cerebral perfusus and other diseases.

Table 1 Demographic, clinical, and laboratory data on eight patients with systemic lupus erythematosus

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (y)</th>
<th>Disease duration (months)</th>
<th>ANA†</th>
<th>aDNA†</th>
<th>aENA‡</th>
<th>LAC§</th>
<th>aCL¶</th>
<th>Symptoms</th>
<th>Clinical evaluation</th>
<th>Treatment**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>120</td>
<td>+</td>
<td>Neg</td>
<td>Neg</td>
<td>Pos</td>
<td>IgG high titre</td>
<td>Headache</td>
<td>Negative</td>
<td>CIA, ASA, methylprednisolone</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>132</td>
<td>+</td>
<td>Neg</td>
<td>SSA</td>
<td>Neg</td>
<td>IgG high titre</td>
<td>Asymptomatic</td>
<td>Negative</td>
<td>HCG, ASA, methylprednisolone</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>24</td>
<td>+</td>
<td>Neg</td>
<td>RNP</td>
<td>Pos</td>
<td>IgG high titre</td>
<td>Asymptomatic</td>
<td>Hypereactive tendon reflexes</td>
<td>Warfarin, prednisone</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>48</td>
<td>+</td>
<td>1:160</td>
<td>Neg</td>
<td>Neg</td>
<td>IgG high titre</td>
<td>Headache</td>
<td>Negative</td>
<td>HCG, dexamethasone</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>1</td>
<td>+</td>
<td>SSA/SSB</td>
<td>Neg</td>
<td>Neg</td>
<td>IgG high titre</td>
<td>Asymptomatic</td>
<td>Negative</td>
<td>HCG, prednisone</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>130</td>
<td>+</td>
<td>Neg</td>
<td>SSA/SSB</td>
<td>Pos</td>
<td>IgG high titre</td>
<td>Headache</td>
<td>Hypereactive tendon reflexes</td>
<td>Warfarin, prednisone</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>72</td>
<td>+</td>
<td>1:160</td>
<td>Neg</td>
<td>Neg</td>
<td>Asymptomatic</td>
<td>Headache</td>
<td>Negative</td>
<td>HCG, CIA, methylprednisolone</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>1</td>
<td>+</td>
<td>1:80</td>
<td>SSA</td>
<td>Neg</td>
<td>Neg</td>
<td>Headache</td>
<td>Negative</td>
<td>HCG, ASA, prednisone</td>
</tr>
</tbody>
</table>

Cases in bold are those with a secondary antiphospholipid syndrome.
†Detected by indirect immunofluorescence (IFI) using Hep-2 cells as substrate.
‡Detected by IIF on Chondria luciae.
§Detected by a double immunodiffusion (ID) method.
¶Detected by kaolin clotting time, diluted Russell viper venom test.
**AH the time of instrumental evaluation.

Magnetic resonance imaging

MRI was carried out using a conventional 1.5 Tesla whole body MR imaging Magnetom SP 4000 (Siemens), using a standard circular polarised head coil. We acquired T1 sequences (time of repetition (TR) 500 ms, time of echo (TE) 14 m), T2 sequences (TR 2002 ms, TE 90 ms), weighted images, and fluid attenuated inversion recovery (FLAIR) sequences (TR 8002 ms, TE 104 ms, inversion time (TI) 2000 ms, 6.0 mm thickness, 1.0 mm gap, 256×192 matrix).

1H-Magnetic resonance spectroscopy

1H-MR spectra were obtained using the same Siemens imager (1.5 Tesla whole body MR imaging Magnetom SP 4000, Siemens). A single voxel spin echo sequence with a TE of 135 ms and a TR of 2000 ms was used. Water suppression was achieved using three Gaussian shaped chemical shift selective pulses of 60 Hz width (CHESS technique). For mathematical eddy current compensation, the echo signal (six scans, two prescans) without water suppression was collected first. The final echo (obtained using 256 scans and water suppression) was first corrected for eddy current using the echo without suppression as the reference, then zero filled (from 1024 to 2048 data points), filtered using a Gaussian function (256 ms half width), and Fourier transformed. Finally, manual (zero and first order) phase correction and peak integrations of the real part of the spectrum were carried out. No baseline manipulation was done.

The neurometabolite spectra were obtained from different volumes of interest (2×2×2 cm) localised in abnormally and normally perfused regions on SPECT. MRI imaging data from the same areas were also collected.

Peak levels of signals from brain metabolites NAA, choline, and creatine were measured and values were expressed as NAA/Cho, Cho/Cre, and NAA/Cre ratios. The spectroscopic imaging acquisition data in the present study were reported as ratios because, at the time of data acquisition, absolute quantitation was not available for this spectroscopic imaging protocol. Data from healthy brain tissue in 20 normal subjects (obtained with the same machinery and protocol) were used as the referral cut off (see table 2 for reference values).

To minimise bias deriving from different positioning of voxels—as metabolite concentrations derived from 1H-MRS examination may differ according to the brain region explored and the amount of grey/white matter—we selected only volumes of interest (VOI) with normal MRI signal, hypoperfused or normoperfused by SPECT, and located in similar brain regions. For this evaluation the frontal lobes
were chosen, as the reference values from the control subjects were obtained in these areas.

Neurometabolite mean ratios were then compared.

1H-MRS data were entered and processed in a one-dimensional MR software package as previously reported. In each patient all three imaging examinations were obtained within 48 hours using the following sequence: SPECT, MRI, 1H-MRS. SPECT and MRI image analyses were first separately undertaken by two expert radiologists and then jointly after multimodal co-registration of the acquired volumes (done with statistical parametric mapping software using the ‘maximisation of mutual information’ technique). Finally, a follow up re-evaluation was carried out in five patients in whom an MRI analysis was repeated between four and six years after the first instrumental evaluation (between January 2001 and December 2003).

Owing to the small number of observations, statistical analysis were carried out using the non-parametric Mann–Whitney U test, defining a probability (p) value <0.05 as statistically significant.

RESULTS

At the time of the first investigation all eight patients had stable and inactive SLE (as judged by the European consensus lupus activity measure (ECLAM) scoring); four patients complained only of mild neurological manifestations such as tension headache, while the other four were completely asymptomatic. Neurological examination was negative except for mildly increased tendon reflexes (in two asymptomatic patients and one patient with headache). Demographic data, laboratory data, and ongoing treatment of each patient are summarised in Table 1.

SPECT scan and MRI findings

Multiple perfusion defects on SPECT were detected in all eight patients, with a total of 12 hypoperfused areas: 25% were localised in the temporal regions, 59% in the frontal regions, and 16% in parieto-occipital regions. Three patients (two with headache and one asymptomatic) had abnormal MRI findings; the MRI changes appeared as one or more small (<1 cm) areas of increased signal intensity on T2 weighted and FLAIR acquisition in the white matter of the frontal, temporal, and parieto-occipital lobes. All the other patients (two with headache and three asymptomatic) had normal MRI findings. MRI was normal in nine of the 12 areas shown to be hypoperfused by SPECT and in nine of 11 normoperfused areas, giving a total of 18 normal MRI areas with different perfusion patterns on SPECT.

Table 2

Results of single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and localised 1H-magnetic resonance spectroscopy (1H-MRS) carried out in eight patients with systemic lupus erythematosus

<table>
<thead>
<tr>
<th>Case</th>
<th>Symptoms</th>
<th>Volume of interest</th>
<th>SPECT</th>
<th>MRI</th>
<th>1H-MRS</th>
<th>NAA/Cho</th>
<th>NAA/Cr</th>
<th>Cho/Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Headache</td>
<td>Right temporal</td>
<td>Hypoperfused</td>
<td>Normal</td>
<td>1.74</td>
<td>2.05</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right frontal</td>
<td>Hypoperfused</td>
<td>Normal</td>
<td>1.25</td>
<td>2.21</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left frontal</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>2.13</td>
<td>2.32</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Asymptomatic</td>
<td>Right frontal</td>
<td>Hypoperfused</td>
<td>Normal</td>
<td>1.43</td>
<td>1.97</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left frontal</td>
<td>Hypoperfused</td>
<td>Normal</td>
<td>1.47</td>
<td>1.95</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left occipital</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>2.21</td>
<td>1.9</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Asymptomatic</td>
<td>Left frontal</td>
<td>Hypoperfused</td>
<td>Normal</td>
<td>1.39</td>
<td>2.44</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right frontal</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>1.81</td>
<td>1.77</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left occipital</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>3.44</td>
<td>1.95</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Headache</td>
<td>Right temporo-parietal</td>
<td>Hypoperfused</td>
<td>Normal</td>
<td>2.74</td>
<td>2.86</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left temporo-parietal</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>2.13</td>
<td>1.93</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right frontal</td>
<td>Hypoperfused</td>
<td>Normal</td>
<td>2.17</td>
<td>2.65</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Asymptomatic</td>
<td>Right parieto-occipital</td>
<td>Hypoperfused</td>
<td>Normal</td>
<td>2.93</td>
<td>1.97</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left parieto-occipital</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>2.79</td>
<td>2.09</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Headache</td>
<td>Left frontal</td>
<td>Hypoperfused</td>
<td>Abnormal</td>
<td>2.01</td>
<td>1.43</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right frontal</td>
<td>Normoperfused</td>
<td>Abnormal</td>
<td>3.32</td>
<td>2.87</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right occipital</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>3.26</td>
<td>1.96</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Asymptomatic</td>
<td>Right frontal</td>
<td>Hypoperfused</td>
<td>Abnormal</td>
<td>2.4</td>
<td>1.9</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left occipital</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>1.66</td>
<td>1.88</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Headache</td>
<td>Left frontal</td>
<td>Normoperfused</td>
<td>Normal</td>
<td>2.02</td>
<td>1.89</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right frontal posterior</td>
<td>Normoperfused</td>
<td>Abnormal</td>
<td>2.04</td>
<td>2.27</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right parieto-occipital</td>
<td>Hypoperfused</td>
<td>Abnormal</td>
<td>2.57</td>
<td>2.06</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Reference values for healthy tissue (frontal lobes) from 12 male and 8 female control subjects aged 25 to 65 years (mean (SD))

2.6 (0.5) 2.1 (0.5) 0.8 (0.2)

Table 3

Results of magnetic resonance imaging carried out in five patients between four and six years after the first instrumental evaluation

<table>
<thead>
<tr>
<th>Case</th>
<th>Symptoms on initial evaluation</th>
<th>MRI</th>
<th>SPECT</th>
<th>MRS</th>
<th>Follow up MRI</th>
<th>Symptoms at follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Asymptomatic</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Headache, cognitive dysfunction</td>
</tr>
<tr>
<td>3</td>
<td>Asymptomatic</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>4</td>
<td>Headache</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>Worsened headache, cognitive dysfunction</td>
</tr>
<tr>
<td>5</td>
<td>Asymptomatic</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>6</td>
<td>Headache</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive with new lesions</td>
<td>Worsened headache, cognitive dysfunction</td>
</tr>
</tbody>
</table>

MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; SPECT, single photon emission computed tomography.
Correlation of SPECT findings with 1H-MRS and neuropsychiatric manifestations

For this evaluation we selected only results of SPECT, MRI, and 1H-MRS obtained from the frontal lobes, corresponding to a total of nine voxels (detected in six of eight patients) that were hypoperfused or normoperfused on SPECT and normal on MRI.

When comparing neurometabolite ratios of the patients with the reference controls, the mean NAA/Cho ratios in both hypoperfused and normoperfused frontal areas were reduced (hypoperfused v control: p<0.0001; normoperfused v control: p = 0.002), while mean Cho/Cr ratios both in hypoperfused and normoperfused frontal areas were higher than in the controls (hypoperfused v control: p = 0.001; normoperfused v control: p = 0.01); there were no differences in the NAA/Cr ratios between the groups.

When comparing neurometabolite ratios in hypoperfused versus normoperfused areas, the mean NAA/Cho ratios were lower (but not significantly so) in the hypoperfused than in the normoperfused areas (mean (SD) values, 1.56 (0.32) v 1.98 (0.16); p = 0.166); conversely, mean Cho/Cr ratios were significantly increased in hypoperfused compared with normoperfused areas (1.43 (0.27) v 1.00 (0.07); p<0.023); no significant differences were detected in the NAA/Cr ratios (2.18 (0.30) v 1.99 (0.28); p = 0.381).

Follow up

Five patients underwent a new MRI after four to six years from baseline evaluation (two of the others refused to repeat the analysis and one was lost to follow up). Three of the five had new MRI lesions in areas with previously abnormal 1H-MRS and hypoperfusion on SPECT but negative on MRI examination. One patient with positive MRI, SPECT, and MRS and hypoperfusion on SPECT but negative on MRI had no new lesions (table 3). All the new MRI lesions showed anatomical correspondence with the previously detected abnormal 1H-MRS and SPECT areas.

DISCUSSION

CNS involvement is an important complication of SLE, clinical signs and symptoms occurring in a large proportion of patients, depending on the sensitivity of the criteria applied. Owing to the lack of effective imaging methods, accurate diagnosis and assessment of disease activity and severity is usually difficult, particularly in those patients with minor and less specific clinical signs. As a result of the poor diagnostic accuracy, it is not surprising that the pathogenic mechanisms responsible for the different neuropsychiatric disorders and types of brain damage remain undefined in a large proportion of patients.

In order to improve the diagnostic value and to gain a better understanding of the pathophysiological mechanisms responsible for damage, it may be useful to link morphological imaging techniques (in particular MRI) with functional techniques such as SPECT and 1H-MRS.

MRI is currently considered the neuroimaging method of choice for morphological brain evaluation in NP-SLE, being capable of detecting a large proportion of the brain lesions, which are mainly represented by small punctate focal lesions in the white matter. Although MRI appears sensitive for detecting abnormalities in patients with major clinical manifestations such as focal neurological defects, seizures, and cerebrovascular disease, its sensitivity is very low in patients with diffuse neuropsychiatric disturbances such as headache, cognitive dysfunction, affective disorders, or confusional states. In these patients functional (perfusion or metabolic) alterations could play a role in revealing abnormalities that would remain undetected by conventional MRI. Furthermore the interpretation of small punctate hyperintense MRI lesions which are often observed even in normal subjects is still debated, as is the normal MRI found in patients with overt NP-SLE. In these cases coupling morphological and functional imaging techniques may be helpful.

Because of the increasing evidence that mechanisms of NP-SLE are mainly related to microangiopathic vascular involvement, determination of cerebral blood flow as an indicator of early CNS involvement seems promising. SPECT scanning provides information on regional brain perfusion which is closely linked to cerebral metabolism. SPECT has revealed abnormalities in regional distribution of the radiotracer not only in patients with definite CNS disease, but also in many patients without clinically apparent CNS disease. In a study that assessed the relation between perfusion abnormalities, clinical manifestations, MRI, and EEG, it was observed that up to 35% of SPECT alterations (and in the present study 73%) did not correspond to MRI abnormalities. The hypotheses proposed to explain these discrepancies may be summarised as either a false positive SPECT (the presence of deep MRI lesions resulting in a mild to moderate reduction in HMPAO uptake in the projection area (diaschisis)), or a very early stage of neurological involvement, or both.

1H-MRS is a technique that provides non-invasive access to “live chemistry” in situ. This technique shows four major spectra corresponding to different metabolites: N-acetylaspartate, which can be considered a marker of neuronal integrity; choline, including choline containing phospholipids that are released during active myelin breakdown; creatine, which has a constant concentration throughout the brain and tends to be resistant to change in all but the most severely destructive lesions (therefore is suitable for use as an internal standard against which the resonance intensities of NAA and choline can be normalised); and lactate (Lac), which is the end product of glycolysis and accumulates when oxidative metabolism cannot meet energy requirements. Brain 1H-MRS has been carried out in SLE patients with encouraging results. Concerning single metabolites, previous quantitative studies have shown that NAA is substantially reduced both in patients with active NP-SLE and in SLE patients with a past history of NP-SLE. This suggests that it is most probably a measure of NP-SLE severity and outcome rather than of NP-SLE activity. The choline peak is usually increased in NP-SLE and has been related to disease activity or reactive brain inflammation. With regard to lactate, although ischaemia has been implicated in NP-SLE, a definite peak of this metabolite has not been observed, suggesting that in anything but overt stroke extensive anaerobic metabolism is not a fundamental characteristic of NP-SLE. In the present study a lactate peak was not detected in any patient.

Results obtained from 1H-MRS studies carried out on patients with NP-SLE have show the ability of this technique to detect neurochemical brain abnormalities—even in normal MRI areas—or to reveal an organic substrate in patients with neurocognitive disorders. It has also been proposed that it quantifies the severity of cerebral damage. At present, the value of this tool is mainly in a diagnostic phase, but it may contribute to shedding light on the interpretation, quantification, and qualitative characterisation of brain damage (atrophic, demyelinating, gliotic, ischaemic, inflammatory) and in monitoring cerebral involvement and the efficacy of treatment. Thus 1H-MRS could be useful in follow up for outcome studies, prognosis estimates, or disability determination in patients with SLE.

The information provided by different diagnostic tools such as SPECT, MRI, and 1H-MRS make it reasonable and
potentially useful to apply them in the same patient. In this study all eight patients—four with subtle symptoms and four without any complaints—had MRI, SPECT, and 1H-MRS. While SPECT revealed the presence of hyperperfused areas in both symptomatic and asymptomatic patients and in all cases with positive anticardiolipin antibodies or lupus anticoagu-
ant or both, only three cases (two suffering from headache and one asymptomatic) had an abnormal MRI.

Co-registration of SPECT, MRI, and 1H-MRS has shown that 1H-MRS can identify metabolic abnormalities in brain areas with reduced blood perfusion detected by SPECT but free of MRI abnormalities. In our patients, the major component of neurometabolic abnormalities seemed to be an increased in
choline rather than a reduction in the NAA peak, as commonly reported by other investigators.12-15 However, the patients examined in this report are quite different as they did not suffer from overt major NP-SLE manifestations. The signifi-
cance of our findings in this kind of patient remains to be
elucidated. Interestingly, the majority of neurometabolically
suffer from overt major NP-SLE manifestations. The signifi-
cance of our findings in this kind of patient remains to be
elucidated. Interestingly, the majority of neurometabolically
served areas were located in the frontal regions. Similar
findings have been reported by others.12

Although the precise meaning of these metabolic abnorm-

alities remains to be determined, their localisation in areas of
reduced cerebral blood flow suggests that they could rep-
resent an early sign of neuronal injury in SLE patients, even in the presence of normal brain MRI. If so, 1H-MRS could be a sensitive measure of neuronal damage. This would
 corroborate the hypothesis that cerebral hyperperfusion
detected by SPECT in areas with normal MRI appearances
should not to be regarded as a false positive result but could repre-
sent a very early manifestation of CNS involvement.

Some interesting preliminary information comes from the
follow up study of the patients who had a further MRI some years later. Three of them showed new MRI lesions in areas
previously positive to 1H-MRS and SPECT and negative on MRI examination. One patient with positive MRI, SPECT and 1H-MRS showed an increase in the number of MRI lesions while one patient with negative MRI, SPECT, and 1H-MRS did not show any new lesions (table 3).

If confirmed, these data suggest that pathological areas examined using functional imaging could be at risk of future parenchymal damage. This could be of great importance in elucidating some of the discrepancies between clinical and “traditional” imaging pictures and for prognostic assess-
ment.16-18 Thus a careful functional imaging evaluation may
contribute to the detection of early or subclinical CNS
involvement in the course of the disease, and could be useful in
assessing prognosis, offering a window of opportunity to
start appropriate treatment and prevent irreversible damage.

Conclusion

Our study shows that, in both mild symptomatic and
asymptomatic SLE patients, abnormalities of perfusion or
neuronal-chemical changes can be demonstrated by func-
tional imaging techniques even in the absence of morpho-

tical lesions. The abnormal areas identified by both SPECT
and 1H-MRS may not represent benign lesions or false posi-
tive findings, but may be predictive of future parenchymal
damage, as suggested by Axford et al.19 Owing to the limited number of patients included, larger prospective
follow up studies are needed.
Proton magnetic resonance spectroscopy may predict future brain lesions in SLE patients: a functional multi-imaging approach and follow up

G Castellino, M Govoni, M Padovan, P Colamussi, M Borrelli and F Trotta

Ann Rheum Dis 2005 64: 1022-1027 originally published online January 7, 2005
doi: 10.1136/ard.2004.026773

Updated information and services can be found at:
http://ard.bmj.com/content/64/7/1022

These include:

References
This article cites 36 articles, 8 of which you can access for free at:
http://ard.bmj.com/content/64/7/1022#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Clinical diagnostic tests (1282)
- Radiology (1113)
- Radiology (diagnostics) (750)
- Connective tissue disease (4253)
- Immunology (including allergy) (5144)
- Systemic lupus erythematosus (571)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/