Prevalence and predictors of fragility fractures in systemic lupus erythematosus

C-S Yee, N Crabtree, J Skan, N Amft, S Bowman, D Situnayake, C Gordon

Objective: To establish the prevalence of reduced bone mineral density (BMD) and fractures, and risk factors for fractures, in a cross sectional study of a large cohort of patients with systemic lupus erythematosus (SLE).

Methods: All SLE patients willing to take part in the study had bone densitometry in 1999/2000 and completed a questionnaire on risk factors for osteoporosis and on drugs used. Accumulated damage was scored using the SLICC/ACR damage index (SDI). Only fractures occurring since the onset of SLE and unrelated to trauma were included, and the SDI score was modified to exclude osteoporotic fractures. Statistical analysis was by χ^2 test, Fisher’s exact test, and binary logistic regression.

Results: 242 patients were studied, median age 39.9 years (range 18 to 80), median disease duration 7.0 years (range 0 to 42). Of these, 123 (50.8%) had reduced BMD (T score <-1.0) and 25 (10.3%) were in the osteoporotic range (T score <-2.5). Fracture fractures had occurred in 22 patients (9.1%) since diagnosis of SLE. Of these, two (9.1%) had normal BMD and 20 (90.9%) had reduced BMD, while seven (31.8%) were within the osteoporotic range. Non-Afro-Caribbean race and exposure to prednisolone >10 mg daily were significantly associated with reduced BMD, while age and menopause were associated with osteoporosis. The risk factors for fractures were reduced BMD and age.

Conclusions: Reduced BMD, osteoporosis, and fragility fractures appear to be prevalent in patients with SLE. Steroids were not an independent risk factor for fractures, although their effect could be mediated through reduced bone mineral density.

Systemic lupus erythematosus (SLE) is a chronic autoimmune multisystem disorder which predominantly affects women in the prime of their life. As survival improves in SLE, it is anticipated that reduced BMD and fragility fractures will become a major form of morbidity, as corticosteroids remain the mainstay of treatment. However, there have been few studies on reduced BMD and fragility fractures in SLE, and they have tended to involve small numbers of patients or have only examined premenopausal patients.

Our objectives in this cross sectional study were to determine the prevalence of reduced BMD and fragility fractures and the risk factors for these conditions in a large cohort of SLE patients.

METHODS

Subjects and setting
All patients who fulfilled the American College of Rheumatology criteria for SLE and were attending lupus clinics at Queen Elizabeth Hospital and City Hospital in Birmingham were invited to participate in this cross sectional study. This large cohort of SLE patients was set up by one of us (CG) in 1989. The local ethics committees approved the study. During follow up, detailed clinical and drug use information was recorded at each visit and entered into a specific lupus database (BLIPS). Damage was scored using Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (SDI) every six months and this has been in use since 1993. Ethnicity was classified into white, Afro-Caribbean (black), Asian (Indian subcontinent), or others.

Patients willing to participate were required to complete a questionnaire on risk factors for osteoporosis, details about any fractures sustained, family history of any fractures, and drugs used (current and previous), with particular reference to glucocorticoids, the oral contraceptive pill, hormone replacement therapy (HRT), calcium/vitamin D, and bisphosphonates. Bone mineral densitometry was done in 1999/2000, measuring BMD of the femoral neck and lumbar spine by dual energy x-ray absorptiometry using a Lunar DPX-L pencil beam scanner with software version 1.3 g (GE Medical Systems, Madison, Wisconsin, USA). BMD results were computed into a T score, which compared the patient’s observed BMD with an expected value for a young adult (expressed as number of standard deviations). Definitions of osteopenia and osteoporosis used were according to the World Health Organisation (WHO) criteria. Only fractures occurring since the onset of SLE and unrelated to trauma were included. A modified SDI score excluding osteoporotic fractures was used in the analysis.

Statistical analysis
Analysis was carried out using the χ^2 test, Fisher’s exact test, or binary logistic regression where appropriate. The model for logistic regression was tested for goodness of fit with the Hosmer and Lemeshow test. Probability (p) values of less than 0.05 were considered statistically significant. Statistical calculations were done using SPSS for Windows, version 10.0 (SPSS Inc, Chicago, Illinois, USA).

RESULTS
In all, 318 patients were invited to participate in the study, and 242 agreed to take part (response rate 76.1%). The demographic characteristics of this cohort are shown in table 1. There were 106 patients (56.2%) with a modified

Abbreviations: BMD, bone mineral density; SDI, Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index; SLE, systemic lupus erythematosus

www.annrheumdis.com

Prevalence of risk factors for osteoporosis in 242 patients with systemic lupus erythematosus

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently taking oral corticosteroids</td>
<td>176 (72.7)</td>
</tr>
<tr>
<td>Ever had intravenous pulse steroids</td>
<td>63 (26)</td>
</tr>
<tr>
<td>Ever had prednisolone >10 mg/day</td>
<td>179 (74)</td>
</tr>
<tr>
<td>Ever had prednisolone >29 mg/day</td>
<td>61 (25.2)</td>
</tr>
<tr>
<td>Ever smoked</td>
<td>85 (35.1)</td>
</tr>
<tr>
<td>Ever had alcohol >20 units/week</td>
<td>4 (1.7)</td>
</tr>
<tr>
<td>Ever avoided dairy products</td>
<td>28 (11.6)</td>
</tr>
<tr>
<td>Ever confined to bed for >2 months</td>
<td>28 (11.6)</td>
</tr>
</tbody>
</table>

DISCUSSION

We found a high prevalence of reduced BMD (50.8%), osteoporosis (10.3%), and fragility fracture (9.1%) in our SLE cohort, considering that 70.7% of our patients were not more than 50 years of age. Our figures were similar to previous studies by Kipen et al., who found a prevalence of 44.3% for reduced BMD and 13.4% for osteoporosis, and by Ramsey-Goldman et al., who reported low trauma fractures in 12.3% of their cohort. Although our study had a relatively large number of patients in the cohort, one of its limitations is the small number with osteoporosis and fragility fracture.

We did not find a significant association between steroid exposure and reduced BMD. This is not surprising, as steroids are a well recognised cause of osteoporosis and fractures. Previous studies by Kipen et al. and the Hopkins Lupus Cohort have found that cumulative steroid dose is associated with reduced BMD or osteoporosis. Unfortunately, we did not have the cumulative steroid dose in our study. It is also not unexpected that Afro-Caribbean race is protective against reduced BMD, as Afro-Caribbeans tend to have higher BMD than whites.

In our study, reduced BMD appeared to be the strongest risk factor for fragility fractures. We did not find a significant association on multivariate analysis between exposure to different glucocorticoid doses and fractures. There has been only one previous study, by Ramsey-Goldman et al., looking at low-trauma fractures following the diagnosis of SLE. These investigators found that longer exposure to steroid was independently associated with fractures, which is in contrast to our result. However, in that study they looked at the duration of exposure (rather than the dose) and data on BMD were not collected, which may explain the difference. It is likely that the

With multivariate analysis, non-Afro-Caribbean race and exposure to prednisolone >10 mg/day were significantly associated with reduced BMD. Age and menopause were associated with osteoporosis in multivariate analysis (Table 3). However, the 95% confidence interval of the odds ratio for menopause was large, reflecting the small number of patients with osteoporosis in this cohort.

Fragility fractures

There were 22 patients (9.1%) with fragility fractures since the diagnosis of SLE. All of them were female. Of these, two (9.1%) had normal BMD and 20 (90.9%) had reduced BMD, with seven (31.8%) within the osteoporotic range. Most of these patients (81.8%) were menopausal. Only three patients (13.6%) were taking bisphosphonates at the time of the scan.

Univariate analysis showed that age, disease duration, menopause, non-Afro-Caribbean race, modified SDI, and reduced BMD were associated with fractures, while exposure to oral contraceptives was protective. Only reduced BMD and age were predictors of fractures in multivariate analysis (Table 4). Steroid exposure was not significantly associated with fragility fracture.

Demographic characteristics of 242 patients with systemic lupus erythematosus

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced BMD</td>
<td></td>
</tr>
<tr>
<td>Osteoporosis</td>
<td></td>
</tr>
<tr>
<td>Non-Afro-Caribbean</td>
<td>2.5 (1.2 to 5.4)</td>
</tr>
<tr>
<td>Ever taken prednisolone >10 mg/day</td>
<td>2.1 (1.1 to 4.2)</td>
</tr>
<tr>
<td>Menopause</td>
<td>13.3 (1.6 to 111.1)</td>
</tr>
<tr>
<td>Age</td>
<td>1.0 (1.0 to 1.1)</td>
</tr>
</tbody>
</table>

BMD, bone mineral density; CI, confidence interval.

With previous study, by Ramsey-Goldman et al., looking at low-trauma fractures following the diagnosis of SLE. These investigators found that longer exposure to steroid was independently associated with fractures, which is in contrast to our result. However, in that study they looked at the duration of exposure (rather than the dose) and data on BMD were not collected, which may explain the difference. It is likely that the
Table 4 Predictors of fragility fractures since onset of lupus

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced BMD</td>
<td>8.1 (1.7 to 40.0)</td>
</tr>
<tr>
<td>Age</td>
<td>1.2 (1.1 to 1.3)</td>
</tr>
</tbody>
</table>

BMD, bone mineral density; CI, confidence interval.

REFERENCES

ACKNOWLEDGEMENTS
This study was supported by an unconditional educational grant from Merck, Sharpe and Dohme and by grants from Lupus UK.
Prevalence and predictors of fragility fractures in systemic lupus erythematosus

C-S Yee, N Crabtree, J Skan, N Amft, S Bowman, D Situnayake and C Gordon

Ann Rheum Dis 2005 64: 111-113
doi: 10.1136/ard.2003.018127

Updated information and services can be found at:
http://ard.bmj.com/content/64/1/111

These include:

References
This article cites 16 articles, 3 of which you can access for free at:
http://ard.bmj.com/content/64/1/111#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Calcium and bone (725)
- Musculoskeletal syndromes (4951)
- Osteoporosis (137)
- Connective tissue disease (4253)
- Immunology (including allergy) (5144)
- Systemic lupus erythematosus (571)
- Clinical diagnostic tests (1282)
- Epidemiology (1367)
- Menopause (including HRT) (54)
- Radiology (1113)
- Radiology (diagnostics) (750)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/