Telomerase activity in B and T lymphocytes of patients with systemic lupus erythematosus

W Klapper, F Moosig, A Sotnikova, W Qian, J O Schröder, R Parwaresch

Telomeres, the natural ends of chromosomes, shorten with each cell division and thus function as a “mitotic clock.” Critically shortened telomeres force cells to irreversibly exit the cell cycle and enter a state called “senescence.” Immortal cells, such as germ line cells, stem cells, and tumour cells, express the enzyme telomerase, which adds new telomeric repeats to the chromosomal ends to compensate for telomere loss.

Methods: CD19+, CD4+, and CD8+ lymphocytes were isolated from the peripheral blood of nine patients with SLE and nine healthy controls by means of magnetic bead-coupled antibodies and tested for telomerase activity with the TRAP assay.

Results: Telomerase activity was significantly increased in CD19+ B cells from patients with SLE. CD4+ and CD8+ T cells from lupus patients displayed increased mean telomerase activity, although the difference from normal controls did not reach statistical significance.

Conclusions: Increased telomerase activity in the B and the T cell lineage might indicate activation and proliferation of these lymphocytes.

RESULTS

Using a highly sensitive assay for telomerase activity which can detect a single telomerase positive HeLa cell, we found telomerase activity in almost all lymphocytes in healthy donors (9/9 for CD4+, 7/8 for CD8+, 8/8 for CD19+). Although the activity was very low (30–60 times less than HeLa tumour cells), CD4+ cells showed the highest activity (mean 5.1 (2.4) ng), whereas CD8+ cells (2.0 (1.2) ng) and CD19+ cells (1.9 (1.7) ng) displayed similar activity levels (fig 1). Telomerase activity in SLE samples exhibited a distribution pattern comparable to that in healthy donors, with the highest levels in CD4+ cells (7.1 (3.0) ng) and similar levels in CD8+ (4.1 (3.5) ng) and CD19+ (5.9 (3.9) ng) lymphocytes. Although the mean values differed between patients with SLE and healthy controls in CD4+ and CD8+ cells, a Kruskal-Wallis test showed that the differences were not

www.annrheumdis.com
significant (p<0.05; fig 1). However, telomerase activity was significantly increased in SLE CD19+ cells compared with normal donors (p<0.05, Kruskal-Wallis test, Dunn’s multiple comparison test; fig 1).

To test whether telomerase activation can prevent telomere shortening in the lymphocyte subsets in SLE, we measured telomere length in these cells. Owing to frequent lymphopenia in patients with SLE, only small cell numbers could be recovered from the blood (table 1). Thus only a few samples yielded enough genomic DNA to perform Southern blotting. We were able to examine telomere length in CD4+ cells from five healthy donors and six patients with SLE. The telomere length of CD8+ cells was analysed in five healthy donors and five patients with SLE. We found no significant telomere shortening. Figure 2 shows a representative blot.

DISCUSSION

In contrast with previous reports, which dealt only with telomerase activation in peripheral blood mononuclear cells from patients with SLE, we measured telomerase activity quantitatively in purified lymphocyte subgroups. Because monocytes and granulocytes have been shown to have no telomerase activity, the experimental approach used in this study should most precisely reflect the in vivo situation. Our findings demonstrate that in SLE, telomerase activity is increased in both B and T cells. Because telomerase upregulation in lymphocytes is induced by different proliferative stimuli in vitro, the accelerated telomerase activity in SLE is probably caused by constitutive in vivo stimulation and higher proliferation. The increase in the mean telomerase activity in SLE compared with healthy controls was apparent in all lymphocyte subpopulations studied here. However, statistical significance was only detected for CD19+ B cells. In patients with SLE, B cell homoeostasis is disturbed, whereas in other rheumatic diseases, such as rheumatoid arthritis and Wegener’s granulomatosis, abnormal expansion of T cell populations has been described. It will thus be of future interest whether the observed high telomerase activity results from the naive or the memory B cell population.

Telomere shortening occurs during replicative aging of somatic cells and causes genetic instability as well as irreversible exit from the cell cycle (‘‘senescence’’) and might thus contribute to tissue aging. No telomere shortening could be detected in lymphocytes from patients with SLE. It has been clearly shown that increased telomerase activity can overcome telomere shortening. We suggest that in lymphocytes of SLE, telomerase activity might be sufficient to compensate for the telomere loss that occurs during proliferation and thus prevent accelerated aging of the immune system in these patients. We cannot rule out the presence of other mechanisms, such as alterations in telomere binding protein expression, which alone or together with the observed high telomerase activity contribute to telomere maintenance in SLE. However, because telomere length has been determined in only a small number of CD4+ and CD8+ samples and a high degree of variation in telomere length has been reported in healthy donors, these data have to be considered preliminary, especially because the telomere length variations might not occur until after an extended disease duration.

As increased telomerase activity follows proliferative stimulation of lymphocytes in vitro, the results presented here suggest that telomerase activity is a marker of lymphocyte proliferation in SLE. On the one hand, CD4+ and CD8+ memory after viral infection show diverse population dynamics, and on the other, it has been suggested that telomerase controls the lifespan of T lymphocytes. It will thus be interesting to determine telomerase activity with the observed high telomerase activity results from the naive or the memory B cell population.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Duration ANA (months)</th>
<th>Anti-dsDNA titre</th>
<th>Anti-RO52 titre</th>
<th>Leucocytes (10^3/µl)</th>
<th>Lymphocytes (10^3/µl)</th>
<th>Hb (g/l)</th>
<th>Thrombocytes (10^3/µl)</th>
<th>ESR (mm/1 st h)</th>
<th>CRP (mg/l)</th>
<th>C3 (g/l)</th>
<th>C4 (g/l)</th>
<th>Actual treatment</th>
<th>SLAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>2560</td>
<td>Neg</td>
<td>133</td>
<td>10.3</td>
<td>3.4</td>
<td>146</td>
<td>272</td>
<td>11</td>
<td>11.7</td>
<td>1.17</td>
<td>0.17</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>5120</td>
<td>15</td>
<td>Neg</td>
<td>20</td>
<td>9.6</td>
<td>140</td>
<td>371</td>
<td>30</td>
<td>8.3</td>
<td>1.28</td>
<td>0.22</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>20480</td>
<td>121</td>
<td>200</td>
<td>7.1</td>
<td>1.8</td>
<td>121</td>
<td>255</td>
<td>11</td>
<td>3.5</td>
<td>0.94</td>
<td>0.11</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
<td>20480</td>
<td>449</td>
<td>200</td>
<td>9</td>
<td>2.3</td>
<td>122</td>
<td>362</td>
<td>19</td>
<td>3.5</td>
<td>0.66</td>
<td>0.06</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>5120</td>
<td>251</td>
<td>Neg</td>
<td>3.9</td>
<td>1.1</td>
<td>117</td>
<td>360</td>
<td>19</td>
<td>3.5</td>
<td>0.84</td>
<td>0.1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>180</td>
<td>20480</td>
<td>Neg</td>
<td>Neg</td>
<td>1.5</td>
<td>114</td>
<td>257</td>
<td>21</td>
<td>14</td>
<td>3.5</td>
<td>0.55</td>
<td>0.06</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>10240</td>
<td>335</td>
<td>200</td>
<td>0.3</td>
<td>129</td>
<td>429</td>
<td>30</td>
<td>22.9</td>
<td>1.22</td>
<td>0.12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>10240</td>
<td>Neg</td>
<td>200</td>
<td>45</td>
<td>0.9</td>
<td>140</td>
<td>167</td>
<td>22</td>
<td>3.5</td>
<td>1.08</td>
<td>0.08</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>10240</td>
<td>706</td>
<td>Neg</td>
<td>4.7</td>
<td>0.7</td>
<td>124</td>
<td>164</td>
<td>57</td>
<td>8.2</td>
<td>0.58</td>
<td>0.05</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1 Clinical characterisation of the nine patients with SLE

Figure 1 Telomerase activity measured by the TRAP assay. For semiquantitative analysis a dilution series of HeLa extract was assayed in parallel. The experimental samples were expressed as corresponding nanograms of HeLa protein. Mean and standard deviation are indicated.

Figure 2 Telomere length was determined by measuring the terminal restriction fragment length using the Southern blot method (TeloTTAGGG telomere length assay, Roche). A representative blot for CD4+ cells is shown. A DNA ladder and control DNA with long telomeres (left side) and short telomeres (right side) are included on the blot. Owing to their heterogeneity, telomere restriction fragments appear as smears on the blot.
activity in CD4+ and CD8+ memory cells from patients with SLE as well as after viral infection. Nevertheless, larger sample numbers are needed to correlate telomere length and telomerase activity with clinical measures of disease activity and duration in order to be able to evaluate the clinical significance. These future studies should analyse telomerase activity and telomere length in purified lymphocyte sub-groups because our data indicate that the extent of telomerase activation differs between B and T cells.

ACKNOWLEDGEMENTS

This study was supported in part by the Kinder-Krebs-Initiative Buchholz-Holm-Seppensen and the Hensel-Stiftung of the University of Kiel.

Authors’ affiliations
W Klapper, A Sotnikova, W Qian, R Parwaresch, Department of Haematopathology and Lymph Node Registry Kiel, University Kiel Niemannsweg 11, 24105 Kiel, Germany
F Moosig, J O Schröder, Second Department of Internal Medicine, University Kiel, Chemnitzstr 33, 24107 Kiel, Germany
W Qian, Department of Haematology, First affiliated Hospital of Zhejiang University, Qianchun Road 79, Hangzhou 310003, China

Correspondence to: Dr W Klapper, wklapper@path.uni-kiel.de

Accepted 17 February 2004

REFERENCES

Telomerase activity in B and T lymphocytes of patients with systemic lupus erythematosus

W Klapper, F Moosig, A Sotnikova, W Qian, J O Schröder and R Parwaresch

Ann Rheum Dis 2004 63: 1681-1683
doi: 10.1136/ard.2003.016022

Updated information and services can be found at:
http://ard.bmj.com/content/63/12/1681

These include:

References
This article cites 15 articles, 9 of which you can access for free at:
http://ard.bmj.com/content/63/12/1681#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Immunology (including allergy) (5144)
- Connective tissue disease (4253)
- Systemic lupus erythematosus (571)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/