Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration

A H Reddi

Background: Articular cartilage homoeostasis is critical for joint function. The steady state homoeostasis of articular cartilage is a balance between anabolic morphogens such as cartilage derived morphogenetic proteins (CDMPs) and bone morphogenetic proteins (BMPs). The signalling by BMPs is modulated by extracellular BMP antagonists such as noggin and chordin with special reference to articular cartilage development and homoeostasis.

DEVELOPMENT AND STRUCTURE OF JOINT

The development of skeleton is based on the distinct origins of appendicular and axial skeleton. The lateral plate mesoderm gives rise to the appendicular skeleton and the associated diarthrodial joints. The axial skeleton arises from the sclerotome of somites derived from paraxial mesoderm. In the human embryo the limb buds are discernible between 4 and 5 weeks, and the morphogenesis of appendicular skeletal structures, including joints, take place therein. The developmental sequence of long bones consists of a cascade that includes mesenchymal cell condensation, cartilage differentiation, and replacement of cartilage by endochondral ossification and joint morphogenesis. The phalangeal joint development is informative as multiple joints develop in the proximal-distal axis, presenting several stages of joint morphogenesis in coronal sections of the hand.

The developmental cascade of joint morphogenesis includes migration of cells, increased proliferation of condensation by cellular aggregation and followed by chondrogenesis, and is heralded by cartilage-specific type II collagen and type IX collagen. The signals for chondrogenesis include BMPs and CDMPs. In the regions of presumptive joint formation hyaluronan, hyaluronan receptors, also known as CD 44, and hyaluronan synthase are localised.

The increasing hyaluronan concentration results in decreased cellular adhesion, leading to cavitation in the synovium with concomitant angiogenesis and vascularisation. However, the precise molecular mechanism of joint cavitation is not clear at present. Movements associated with embryo have been implicated as critical for joint morphogenesis.

The synovial membrane gives rise to the joint capsule, synovial lining, ligaments, and meniscus. The articular cartilage, unlike the growth plate cartilage is not vascularised and remains functional and expresses type II collagen and tenascin.

The functional diarthrodial joint consists of muscle, tendons, ligaments, bone, and meniscus. The muscles generate forces for joint movement and stability. Tendons are functional connections between muscle and bone and consist of tenocytes and collagens I and III. Tendons form the myoteninous junctions. Ligaments provide a stabilising bridge between bones. The anterior cruciate and medial collateral ligaments in the knee provide stability to the joint. Any mechanical instability in the knee joint ligaments leads to

Abbreviations: BMP, bone morphogenetic protein; BMPR, BMP receptor; CDMP, cartilage derived morphogenetic protein; FGF, fibroblast growth factor; GDF, growth/differentiation factor; IL, interleukin; TGFβ, transforming growth factor β; TNFα, tumour necrosis factor α

www.annrheumdis.com
progressive arthritis. Meniscus is a fibrocartilaginous wedge-like structure in the knee. Any damage to or loss of meniscus leads to arthritis. The central zone of adult meniscus is avascular and devoid of nerve supply; the periphery is more vascular. The great majority of collagen is type I in meniscus.

Finally, the articular cartilage in joints permits the smooth movement of the bones. The hyaline cartilage in articular cartilage is composed of type II collagen and aggrecan, a proteoglycan. The orientation of collagen fibrils conforms to the geometry of the articular cartilage surface and is generally tangential. Collagen fibrils are responsible for the tensile strength in cartilage. Over 90% of the collagen is composed of type II with the presence of minor collagens VI, IX, and XI. Proteoglycans in cartilage resist compression and are predominantly composed of the aggrecans. Decorin and fibromodulin modulate collagen II fibrillogenesis in cartilage.

Table 1 Cartilage morphogenetic proteins

<table>
<thead>
<tr>
<th>Morphogen</th>
<th>Other names</th>
<th>Potential function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartilage derived morphogenetic proteins (CDMPs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDMP-1</td>
<td>GDF-5</td>
<td>Growth/differentiation factors (GDFs)</td>
</tr>
<tr>
<td>CDMP-2</td>
<td>GDF-6</td>
<td>Mesenchymal condensation, chondrogenesis</td>
</tr>
<tr>
<td>CDMP-3</td>
<td>GDF-7</td>
<td>Cartilage development and hypertrophy</td>
</tr>
<tr>
<td>Bone morphogenetic proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP-2</td>
<td>BMP-2A</td>
<td>Cartilage and bone morphogenesis</td>
</tr>
<tr>
<td>BMP-4</td>
<td>BMP-2B</td>
<td>Cartilage and bone morphogenesis</td>
</tr>
<tr>
<td>BMP-3</td>
<td>Osteogenesis</td>
<td>Bone formation</td>
</tr>
<tr>
<td>BMP-3B</td>
<td>GDF-10</td>
<td>Membrane bones</td>
</tr>
<tr>
<td>BMP-5</td>
<td>–</td>
<td>Bone morphogenesis</td>
</tr>
<tr>
<td>BMP-6</td>
<td>–</td>
<td>Hyper trophy of cartilage</td>
</tr>
<tr>
<td>BMP-7</td>
<td>Osteogenic protein 1</td>
<td>Bone differentiation</td>
</tr>
<tr>
<td>BMP-8</td>
<td>Osteogenic protein 2</td>
<td>Bone formation</td>
</tr>
<tr>
<td>BMP-9</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>BMP-10</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>BMP-11</td>
<td>GDF-11</td>
<td></td>
</tr>
</tbody>
</table>

CARTILAGE MORPHOGENESIS

Cartilage morphogenesis is a prerequisite for skeletal development and maintenance. The morphogenesis of cartilage determines the shape of bones and location of joints, including articular cartilage, ligaments, and tendon. CDMPs are related to BMPs and are critical for cartilage and joint morphogenesis. Cartilage morphogenesis is a multistep cascade that includes factors for initiation, promotion, and maintenance of cartilage phenotype.

Cartilage morphogenesis is a central problem during skeletal development and growth. What are the morphogenetic signals for initiation of cartilage formation and morphogenesis? The main experimental approaches for morphogen discovery are based on genetic screens, differential display, subtractive hybridisation, and expressed sequence tags in flies, frogs, and mice. This accrued information is extended to humans.

Morphogenesis of cartilage is a key rate limiting step in skeletal development. Cartilage is the blueprint for subsequent bone morphogenesis, the location of tendon and ligament insertions, and the morphogenesis of the joints. The commitment, lineage, differentiation, and morphogenesis are developmental cascades in continuous. The morphogenesis of cartilage is a multistep process and includes initiation, promotion, maintenance, and finally, regulated cell death by apoptosis.

The differentiation of a variety of cartilage such as growth plate cartilage, articular cartilage, elastic cartilage, and fibrocartilage arising from the same genetic endowment in a single subject from identical DNA is a statement of the problem and the experimental challenge. The chondrocyte has a finite lifespan in the epiphysial growth plate, whereas in articular cartilage it has a very long stable phenotype. The initial signalling morphogens and their actions are the focus of this manuscript. The biochemical and molecular approaches to cartilage morphogenesis are based on and influenced by work on BMPs, which first induce cartilage, followed by bone. Hence, all BMPs can be considered as cartilage morphogens.

BONE MORPHOGENETIC PROTEINS

It is now well known that demineralised bone matrix induced new cartilage differentiation, and the cartilage is replaced by bone by the endochondral sequence. The sequential cascade is reminiscent of endochondral bone development in the embryo and includes mesenchymal progenitor migration by chemotaxis, condensation, chondrogenesis, calcification, vascular invasion, bone formation, and haematopoiesis. This sequence recapitulates limb morphogenesis in the limb bud.

The bioactive morphogens in the demineralised extracellular bone matrix have been dissociatively extracted and purified. BMPs are a family of BMPs that was identified, isolated, and cloned. There are three distinct subfamilies, including BMP-2 and BMP-4; BMP-3 and BMP-3B; BMPs 5, 6, 7, and 8 (table 1). The BMPs are members of the transforming growth factor β (TGFβ) superfamily. The TGFβ superfamily includes activins, inhibins, müllerian duct inhibitory substance, nodal, glial derived neurotrophic factor, and GDFs. The BMP superfamily members are synthesised as larger precursors with hydrophobic signal sequence, a conserved carboxy terminal domain with canonical 7-cysteines, of which one cysteine is involved in an intermolecular disulphide linkage for each dimer. There are three intramolecular disulphide bonds in each monomer. The dimeric confirmation is critical for biological function.

CARTILAGE DERIVED MORPHOGENETIC PROTEINS

The isolation and cloning of a family of BMPs (table 1) from bone prompted us to search for cartilage morphogenetic proteins from articular cartilage. A systematic study examined the presence of chondrogenic proteins from bovine cartilage.

Bovine articular cartilage slices were extracted in buffered 1.2 M guanidine hydrochloride. The extract was exchanged with 6.0 M urea in 0.05 M Tris-HCl, pH 7.4 and further purified by heparin affinity chromatography and preparative gel electrophoresis. An active cartilage morphogenetic protein activity was identified based on a reconstitution with insoluble collagenous matrix. A simultaneous complementary approach using reverse transcription–polymerase chain reaction was used. Degenerate oligonucleotide primers were used...
to look for BMP-like molecules. Two new CDMPs, CDMP-1 and CDMP-2, were cloned. The bovine CDMP-1 sequence was used to get a full length human CDMP-1. A 3 kb transcript of CDMP-1 was expressed in articular cartilage. The CDMP-2 was found in articular cartilage, skeletal muscle, and placenta. It is of interest, that in situ hybridisation using CDMP-1 antisense RNA, sites of mesenchymal condensation, were intensely positive for CDMP-1 expression. CDMP-2 was localised in the hypertrophic chondrocytes of the epiphysial growth plate. The elegant work of Storm and colleagues identified expression of GDF-5, also called CDMP-1. Mutation in the GDF-5 (CDMP-1) gene results in brachyphalangism in mice.

CDMP-1 (GDF-3) stimulates chondrogenesis both in vitro and in vivo. CDMP-1 and CDMP-2 stimulated synthesis of aggrecan, the aggregating proteoglycan. The CDMPs preferentially stimulated chondrogenesis. On the other hand, BMPs were not as active as BMP-7 in the expression of alka-line phosphatase activity of the MC 3T3-E1 osteoblastic cell line and ROB-C26 osteoprogenitor cells. In humans, patients with Hunter-Thompson chondrodysplasia exhibit mutations in the CDMP-1 gene locus. The recent work of Wollman and colleagues has demonstrated the potential role of GDF-7 in tendon and ligament morphogenesis. Thus the CDMPs/GDFs may be critical in joint morphogenesis.

Diverse morphogenesis there is an intricate dynamic reciprocal interaction between ectodermally derived apical ectodermal ridge and mesodermally derived mesenchyme. BMP-2 is expressed in the mouse limb bud. BMP-3 (osteogenin) and BMP-4 stimulate chondrogenesis in vitro through the prechondrogenic mesodermal cells of the chick limb bud. BMP-7 is localised in perichondrium and chondrocytes in the early phases of cartilage morphogenesis in humans. Human articular chondrocytes express BMP-7. Other growth factors may play a part in cartilage and limb morphogenesis. Fibroblast growth factor, connective tissue growth factor, parathyroid hormone, and other related factors have an important role in chondrocytes.

The stability of the phenotype of articular chondrocytes is critically dependent on cell shape and cell density. The geometry of the cell culture is critical for chondrocyte gene expression. During limb morphogenesis there is an intricate dynamic reciprocal interaction between ectodermally derived apical ectodermal ridge and mesodermally derived mesenchyme. The downstream targets of BMP and CDMPs are most certainly homoeobox genes. In vertebrates there are four clusters of homoeodomain proteins in chondrocytes. There is a temporal collinearity during homoeobox gene expression. Considerable excitement has been generated about the presence of homoeodomains in proteins in chondrocytes. BMPs, in turn, may be regulated by members of the hedgehog family.

INTERLEUKIN 17 FAMILY AND CARTILAGE HOMEOESTASIS

IL17 is a proinflammatory cytokine secreted by activated T cells. The IL17 family consists of related molecules and are listed alphabetically IL17A, IL17B, IL17C, IL17D, IL17E, and IL17F. IL17B (also known as chondroleukin) was isolated from articular cartilage by purification and protein chemistry. IL17B is localised immunocytochemically in mid-zone and deep chondrocytes in articular cartilage. It is a catabolic cytokine in articular chondrocyte explants and in cartilage. The anabolic actions of BMP-7 are blocked by IL17A and IL17B (Grayson, Moseley, and Reddi, unpublished data).

As CDMPs and BMPs are critical for cartilage morphogenesis and articular cartilage maintenance they may be considered as anabolic. In osteoarthritis cartilage is degraded by catabolic cytokines IL1, IL17, and TNFα. The homoeostasis of articular cartilage in the joint is a balance between anabolic or catabolic cytokines. BMPs and CDMPs induce cartilage remodelling and maintenance. The BMP antagonists and catabolic cytokines contribute to the feed innate capacity for regeneration of articular

www.annrheumdis.com

Downloaded from http://ard.bmj.com/ on May 29, 2017 - Published by group.bmj.com
Thus, at steady state the articular cartilage homoeostasis is a delicate balance of anabolic morphogens and catabolic cytokines (fig 1).

ASSEMBLY OF EXTRACELLULAR MATRIX

Morphogenesis of cartilage is intimately linked to the supramolecular assembly of the extracellular matrix. Cartilage matrix is composed of collagens, proteoglycans, and glycoproteins. The bulk collagen of the cartilage matrix is collagen II with minor collagens IX and XI. Genetic mutations in collagen II result in chondrodysplasias and cartilage degeneration. Overexpression of SV40 large T antigen with regulatory element of COL2A1 gene leads to skeletal defects.

Although type IX collagen is a minor component of cartilage matrix, it has a major role as assessed by gene knockout experiments. When type IX collagen expression is disrupted by homologous recombination, mice develop osteoarthritis with age. Similarly, mutations in type X collagen result in Schmid metaphyseal chondrodysplasia. However, in mice, disruption of type X collagen by homologous recombination, skeleton was not affected. Skeletal morphogenesis is critically dependent on type XI collagen. In an autosomal
dominant form of Stickler syndrome, exon-skipping was identified in COL11A2 due to a mutation in the splice donor site.

The binding of BMPs to collagens I and IV and heparin raises the possibility that morphogens bind to extracellular matrix. The biological consequence of such a binding includes restriction of the mobility of the morphogen, inhibition and/or protection of the morphogen's action, and the protection or enhancement of morphogenesis from non-specific proteolysis.

The antagonism of cartilage and bone morphogenetic protein actions may be mediated by other binding proteins. Noggin is a BMP antagonist secreted by Spemann organiser, and its expression is developmentally regulated tissue-specific noggin expression might alleviate the defects in joint morphogenesis in noggin null mice. There was no effect on the homeobox gene Hoxd and Indian hedgehog expression, which are known to be involved in cartilage morphogenesis.

Because cartilage is damaged in arthritis the current progress in cartilage morphogenetic proteins may aid in regeneration of articular cartilage. Partial articular cartilage is in part a recapitulation of embryonic development and morphogenesis. In fact, the emerging discipline of tissue engineering seeks to restore function to diseased or damaged tissues based on morphogenetic proteins. Thus, CDMs may alleviate the pain of osteoarthritic patients with regeneration of articular cartilage. Regenerative medicine bode well for amelioration of pain in patients with arthritis.

Author's affiliation
A H Reddi
Centre for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California, Davis School of Medicine, Sacramento, California 95817, USA

Correspondence to: Professor A H Reddi, Research Bldg I, Rm 2000, 4635 Second Avenue, Sacramento, CA 95817, USA; ahreddi@ucdavis.edu

REFERENCES

Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration

A H Reddi

Ann Rheum Dis 2003 62: ii73-ii78
doi: 10.1136/ard.62.suppl_2.ii73

Updated information and services can be found at: http://ard.bmj.com/content/62/suppl_2/ii73

These include:

References
This article cites 68 articles, 21 of which you can access for free at: http://ard.bmj.com/content/62/suppl_2/ii73#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/