CONCISE REPORT

European Scleroderma Study Group to define disease activity criteria for systemic sclerosis. III. Assessment of the construct validity of the preliminary activity criteria

G Valentini, W Bencivelli, S Bombardieri, S D’Angelo, A Della Rossa, A J Silman, C M Black, L Czirjak, H Nielsen, P G Vlachoyiannopoulos

Objective: To further assess the construct validity of the three European Scleroderma Study Group (EScSG) preliminary activity indices for systemic sclerosis (SSc): for SSc as a whole, for diffuse SSc (dcSSc), and for limited SSc (lcSSc).

Methods: 30/290 SSc clinical charts collected for the EScSG study 1 to develop activity criteria for SSc were selected and sent to four clinical experts in SSc. The experts ranked the charts from 1 to 30 (1 = lowest activity, 30 = highest activity). The relationships among the ranks given by each investigator and each of the three scores, and between any two of the ranks were investigated.

Results: A consistently significant correlation (rs=0.530–0.712) was found between the ranks given by each of the four experts and the index for the entire patient group. A similar level of agreement was detected between each couple of the four experts (rs=0.428–0.720). Moreover, the ranks given in patients with an index >3 were significantly higher than those given for patients with an index <3. This cut-off point had previously been shown to best discriminate patients with active disease.

Conclusions: Of the originally developed activity indices, the whole series index has been externally validated. The index comprises the first preliminary, but necessary, groundwork to improve the concept of disease activity in SSc, which is still ill defined. It can be used as a preliminary activity index in clinical investigational studies.

The European Scleroderma Study Group (EScSG) recently proposed three activity 10 point indices for systemic sclerosis (SSc): one for SSc as a whole (whole series index), one for diffuse cutaneous SSc (dcSSc), and one for limited cutaneous SSc (lcSSc). The indices were created after analysing the clinical charts of 290 patients with SSc from 19 European medical centres and identifying the set of items that was most significantly correlated with a subjectively defined disease activity score (on a scale from 0–10). The latter had been assigned to the patients under blinded conditions by three members of the protocol management committee and resulted in a reliable measure.

In that study we assessed the construct validity of the indices by the jackknife technique—that is, a statistical method in which one patient at a time is excluded and the significance of the data is evaluated by its dispersion. This approach, while statistically correct, is characterised by an intrinsic circularity; clinical investigators assign a score which is used to establish an index, which in turn is validated by comparing it with the assigned score.

We therefore decided to further test the validity of our indices by assessing the correlation of each of them with the activity ranks given by a different set of observers.

MATERIAL AND METHODS

Table 1 shows the three preliminary activity indices established in our previous study. For the external validation of the indices, the protocol management members (GV, SB, SD’A, ADR) stratified the dataset in three subgroups with increasing activity (inactive, moderately active, and active/very active). Thirty charts (10 out of each group) were then randomly selected and sent to four experts (CMB, LC, HN, PGV) identified as representative of different countries and geographical areas and available to give their evaluation at the time the study was carried out. The four experts were requested to rank the charts under blinded conditions from 1 to 30 (least active disease to most active disease).

We then investigated the correlation between the ranks given by each expert and the respective activity indices for each patient using a Spearman rank correlation. In our previous work we had shown that a score of over 3 was the best single point discriminator between active and inactive disease. We then compared the median rank, for each expert, between any two of the ranks given by each of the four experts (rs=0.428–0.720). Moreover, the ranks given in patients with an index >3 were significantly higher than those given for patients with an index <3. This cut-off point had previously been shown to best discriminate patients with active disease.

We then investigated the correlation between the ranks given by each expert and the respective activity indices for each patient using a Spearman rank correlation. In our previous work we had shown that a score of over 3 was the best single point discriminator between active and inactive disease. We then compared the median rank, for each expert, between those with and without active disease using the Mann-Whitney U test.

We therefore decided to further test the validity of our indices by assessing the correlation of each of them with the activity ranks given by a different set of observers.

MATERIAL AND METHODS

Table 1 shows the three preliminary activity indices established in our previous study. For the external validation of the indices, the protocol management members (GV, SB, SD’A, ADR) stratified the dataset in three subgroups with increasing activity (inactive, moderately active, and active/very active). Thirty charts (10 out of each group) were then randomly selected and sent to four experts (CMB, LC, HN, PGV) identified as representative of different countries and geographical areas and available to give their evaluation at the time the study was carried out. The four experts were requested to rank the charts under blinded conditions from 1 to 30 (least active disease to most active disease).

We then investigated the correlation between the ranks given by each expert and the respective activity indices for each patient using a Spearman rank correlation. In our previous work we had shown that a score of over 3 was the best single point discriminator between active and inactive disease. We then compared the median rank, for each expert, between those with and without active disease using the Mann-Whitney U test.

Table 1 Proposed EScSG disease activity indices for SSc

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Whole series</th>
<th>dcSSc</th>
<th>lcSSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTS* >20</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Scleredema</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Skin†</td>
<td>2.0</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Digital necrosis</td>
<td>0.5</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Vascular†</td>
<td>0.5</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Arthritis</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Articular/muscular†</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>∆TTCO (≥80% of predicted value)</td>
<td>0.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>∆Cardiopulmonary†</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>ESR >30 mm/1st h</td>
<td>1.5</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Hypocomplementaemia (C3 and/or C4)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*Kahaleh total skin score; †deterioration, as evaluated by the patient, of the condition in the month preceding the assessment.

We then investigated the correlation between the ranks given by each expert and the respective activity indices for each patient using a Spearman rank correlation. In our previous work we had shown that a score of over 3 was the best single point discriminator between active and inactive disease. We then compared the median rank, for each expert, between those with and without active disease using the Mann-Whitney U test.

We therefore decided to further test the validity of our indices by assessing the correlation of each of them with the activity ranks given by a different set of observers.

MATERIAL AND METHODS

Table 1 shows the three preliminary activity indices established in our previous study. For the external validation of the indices, the protocol management members (GV, SB, SD’A, ADR) stratified the dataset in three subgroups with increasing activity (inactive, moderately active, and active/very active). Thirty charts (10 out of each group) were then randomly selected and sent to four experts (CMB, LC, HN, PGV) identified as representative of different countries and geographical areas and available to give their evaluation at the time the study was carried out. The four experts were requested to rank the charts under blinded conditions from 1 to 30 (least active disease to most active disease).

We then investigated the correlation between the ranks given by each expert and the respective activity indices for each patient using a Spearman rank correlation. In our previous work we had shown that a score of over 3 was the best single point discriminator between active and inactive disease. We then compared the median rank, for each expert, between those with and without active disease using the Mann-Whitney U test.

We therefore decided to further test the validity of our indices by assessing the correlation of each of them with the activity ranks given by a different set of observers.

MATERIAL AND METHODS

Table 1 shows the three preliminary activity indices established in our previous study. For the external validation of the indices, the protocol management members (GV, SB, SD’A, ADR) stratified the dataset in three subgroups with increasing activity (inactive, moderately active, and active/very active). Thirty charts (10 out of each group) were then randomly selected and sent to four experts (CMB, LC, HN, PGV) identified as representative of different countries and geographical areas and available to give their evaluation at the time the study was carried out. The four experts were requested to rank the charts under blinded conditions from 1 to 30 (least active disease to most active disease).

We then investigated the correlation between the ranks given by each expert and the respective activity indices for each patient using a Spearman rank correlation. In our previous work we had shown that a score of over 3 was the best single point discriminator between active and inactive disease. We then compared the median rank, for each expert, between those with and without active disease using the Mann-Whitney U test.

We therefore decided to further test the validity of our indices by assessing the correlation of each of them with the activity ranks given by a different set of observers.

MATERIAL AND METHODS

Table 1 shows the three preliminary activity indices established in our previous study. For the external validation of the indices, the protocol management members (GV, SB, SD’A, ADR) stratified the dataset in three subgroups with increasing activity (inactive, moderately active, and active/very active). Thirty charts (10 out of each group) were then randomly selected and sent to four experts (CMB, LC, HN, PGV) identified as representative of different countries and geographical areas and available to give their evaluation at the time the study was carried out. The four experts were requested to rank the charts under blinded conditions from 1 to 30 (least active disease to most active disease).

We then investigated the correlation between the ranks given by each expert and the respective activity indices for each patient using a Spearman rank correlation. In our previous work we had shown that a score of over 3 was the best single point discriminator between active and inactive disease. We then compared the median rank, for each expert, between those with and without active disease using the Mann-Whitney U test.

We therefore decided to further test the validity of our indices by assessing the correlation of each of them with the activity ranks given by a different set of observers.

MATERIAL AND METHODS

Table 1 shows the three preliminary activity indices established in our previous study. For the external validation of the indices, the protocol management members (GV, SB, SD’A, ADR) stratified the dataset in three subgroups with increasing activity (inactive, moderately active, and active/very active). Thirty charts (10 out of each group) were then randomly selected and sent to four experts (CMB, LC, HN, PGV) identified as representative of different countries and geographical areas and available to give their evaluation at the time the study was carried out. The four experts were requested to rank the charts under blinded conditions from 1 to 30 (least active disease to most active disease).

We then investigated the correlation between the ranks given by each expert and the respective activity indices for each patient using a Spearman rank correlation. In our previous work we had shown that a score of over 3 was the best single point discriminator between active and inactive disease. We then compared the median rank, for each expert, between those with and without active disease using the Mann-Whitney U test.

We therefore decided to further test the validity of our indices by assessing the correlation of each of them with the activity ranks given by a different set of observers.
RESULTS

Table 2 shows the correlations between the disease activity rankings given by each of the four experts and the three EScSG indices. A significant correlation was found between the ranks given by each of the four external investigators and the derived index for the whole series. However, the correlations were not uniformly significant for the dcSSc index and very rarely significant for the lcSSc index. Therefore, we decided only to consider the whole series index for further evaluation.

Table 3 shows the correlations between the ranks given by the four experts for the 30 charts. This table clearly shows that even among experts in the field there is a high level of agreement in the assessment of disease activity. The presence of three factors based on patient self-assessment may cause some concern because of the lack of standardisation. However, such an approach has been accepted as valid and reliable in assessing disease activity in rheumatoid arthritis. In conclusion, we have developed a validated index to assess disease activity in SSc. This index must still be considered preliminary. However, it should be viewed as the first necessary step towards developing a better agreement among different investigators in the assessment of disease activity in SSc. It can be used as a preliminary activity index in clinical investigational studies. Nevertheless, the search for other measures of disease activity in SSc must continue.

DISCUSSION

We identified and validated three sets of criteria devoted to defining disease activity in SSc as whole, in dcSSc, and in lcSSc. Our first validation, however, was carried out by the jackknife approach, which is affected by an intrinsic circularity. In this report we provide the results of an external validation process. Our data show that the index derived for use in clinical investigational studies. Nevertheless, the search for other measures of disease activity in SSc must continue.
European Scleroderma Study Group to define disease activity criteria for systemic sclerosis. III.

Authors' affiliations

G Valentini, S D’Angelo, Second University of Naples, Italy
W Bencivelli, S Bombardieri, A Della Rossa, Clinical Immunology/Rheumatology Units, Department of Internal Medicine, University of Pisa, Italy
A J Silman, University of Manchester, UK
C M Black, Royal Free Hospital, London, UK
L Czirjak, University of Pécs, Hungary
H Nielsen, Rheumatology Unit, Herlev Hospital, Denmark
P G Vlachoyiannopoulos, National University, Athens, Greece

See also “European Scleroderma Study Group to define disease activity criteria for systemic sclerosis. IV. Assessment of skin thickening by modified Rodnan skin score” in this issue of the journal p 904–5.

Correspondence to: Professor G Valentini, U.O di Reumatologia, Edificio 3, Via Pansini, 5 Naples, Naples, Italy; gabriele.valentini@unina2.it

Accepted 22 January 2003

REFERENCES

European Scleroderma Study Group to define disease activity criteria for systemic sclerosis. III. Assessment of the construct validity of the preliminary activity criteria

G Valentini, W Bencivelli, S Bombardieri, S D’Angelo, A Della Rossa, A J Silman, C M Black, L Czirjak, H Nielsen and P G Vlachoyiannopoulos

Ann Rheum Dis 2003 62: 901-903
doi: 10.1136/ard.62.9.901

Updated information and services can be found at:
http://ard.bmj.com/content/62/9/901

These include:

References
This article cites 10 articles, 2 of which you can access for free at:
http://ard.bmj.com/content/62/9/901#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Connective tissue disease (4253)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/