Will pharmacogenetics allow better prediction of methotrexate toxicity and efficacy in patients with RA?

We read with interest the paper by Ranganathan et al proposing that pharmacogenetics may be a useful tool to help predict methotrexate (MTX) toxicity and efficacy in rheumatoid arthritis (RA).1

One aspect they highlight is the potential role of drug efflux mechanisms in contributing to the lack of response to MTX in some patients. It is important to note that although they discuss the drug efflux transporter P-glycoprotein (P-gp) as being of interest, the paper they cite in support of this view actually reports an experiment in which MTX resistance was mediated by a different drug transporter, multidrug resistance protein 1 (MRP1).2 A range of efflux transporters have been described, including P-gp, MRP, and breast cancer resistance protein (BCRP). Data are beginning to suggest that there may be different substrates for different efflux transporters.3 The drug transporter that mediates MTX resistance remains somewhat controversial.

Llorente et al studied 16 patients with RA and found increased P-glycoprotein expression levels in patients who were defined as being refractory to disease modifying drug treatment than in treatment responders.4 Similarly, Norrist et al demonstrated increased P-gp expression in leukaemia cell lines resistant to methotrexate.5 In contrast, a study using mdrl transgenic mice (which overexpress P-gp) showed they remain susceptible to MTX.6 To examine the effect of P-gp expression on MTX response we recently studied 20 patients with RA who were taking parenteral MTX at a stable dose for at least eight weeks. We compared P-gp expression on peripheral blood lymphocytes (PBLs) of patients with RA who were defined as being refractory to MTX and P-gp expression levels in the lymphocytes of 10 healthy controls.

We therefore agree with Ranganathan et al that drug efflux transporters may contribute to the response to MTX in RA.7 We also agree that genetic polymorphism in the expression of such transporters may explain part of the heterogeneity of treatment response. The evidence to date, including our own observations, does not, however, support a significant role of P-gp in mediating this. Further studies are therefore required to determine which other drug transporters are most important in RA in determining MTX resistance. Given the central role played by MTX as a disease modifying antirheumatic drug in RA, modulation of any of such transporters using specific chemosensitising agents may provide a new and rational additional intervention in patients with RA.

S L Hider, C Morgan
Arthritis Research Campaign Epidemiology Unit, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK

E Bell
Department of Immunology, School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK

I N Bruce
University of Manchester Rheumatism Research Centre, Central Manchester and Manchester Children’s University Hospitals NHS Trust, Oxford Road Manchester M13 9WL, UK

Correspondence to: Dr SL Hider; sam.hider@man.ac.uk

References


Authors’ reply

Hider and colleagues correctly highlight the complexity surrounding the regulation of methotrexate (MTX) cellular transport. Members of both the ATP binding cassette (ABC) and solute carrier (SLC) families of transporters have been shown to include MTX among their many substrates.8,9 Transfection of the multidrug resistance proteins MRP1 (ABCC1) and MRP2 (ABCC2) in human cells was associated with a two- to threefold lower accumulation of MTX and reduced retention of long chain polyglutamate forms of MTX.10 Overexpression of MRP3 (ABCC3), MRP4 (ABCC4), or breast cancer resistance protein (BCRP, ABCG2), through cellular transfection or drug selection, can cause similar cellular MTX efflux and MTX resistance.11

Increased expression and function of multidrug resistance 1 (MDR1, ABCB1) messenger RNA and increased P-glycoprotein expression was also seen in a series of leukaemic sublines resistant to MTX.12 A similar study showed that P-glycoprotein may mediate MTX resistance in cells with deficient carrier mediated MTX uptake. An ABCB1 carrier deficient variant of murine 3T6 fibroblasts when inserted with a recombinant retrovirus expressing the human MDR1 gene showed increased survival of resistant cells.13 The peripheral blood mononuclear cells of patients with rheumatoid arthritis who were refractory to treatment with

Table 1 Percentage positive P-gp cells according to disease activity

<table>
<thead>
<tr>
<th>Disease activity</th>
<th>% Positive cells (Mean (SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>46.5 (10.4)</td>
</tr>
<tr>
<td>MTX responders</td>
<td>45.2 (7.3)</td>
</tr>
<tr>
<td>MTX non-responders</td>
<td>40.0 (11.6)</td>
</tr>
</tbody>
</table>

No significant difference was seen between the groups (Kruskal-Wallis, p=0.27).

www.annrheumdis.com

Downloaded from http://ard.bmj.com/ on January 20, 2018 - Published by group.bmj.com

88053
MTX also had higher expression of P-glycoprotein than those who responded to treatment.

As highlighted in our review, there are multiple mechanisms underlying MTX transport and resistance. Some of these may be clinically significant, leading to trials of co-administration of inhibitors of transporters as a therapeutic strategy to improve the efficacy of the drug. Indeed, genetic variants in a number of components of the MTX pathway appear to contribute to the efficacy and toxicity of this agent. In the future, pharmacogenetics, together with demographic, clinical, and immunologic variables, should allow better selection of patients with a high likelihood of therapeutic success and minimal toxicity.

P Ranganathan, H L McLeod

Washington University School of Medicine, Division of Rheumatology, Box 8045, St Louis 63110, USA

Correspondence to: Dr P Ranganathan; prangana@im.wustl.edu

References


Will pharmacogenetics allow better prediction of methotrexate toxicity and efficacy in patients with RA?

S L Hider, C Morgan, E Bell and I N Bruce

doi: 10.1136/ard.62.6.591

Updated information and services can be found at:
http://ard.bmj.com/content/62/6/591

These include:

References
This article cites 16 articles, 10 of which you can access for free at:
http://ard.bmj.com/content/62/6/591#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/