Rheumatoid arthritis (RA) is characterised by chronic inflammation of the synovium and destruction of articular cartilage. Synovial inflammation involves the infiltration and accumulation of activated macrophages and T cells, and proliferation of synovial fibroblasts. The most prominent cytokines in RA synovial fluid, such as interleukin-1 (IL1), tumour necrosis factor α (TNFα), oncostatin M (OSM), and IL6 are derived from macrophages and synovial fibroblasts. In contrast, levels of T cell derived cytokines are very low or absent.

A novel human T cell derived cytokine, IL17, has been described that is produced by CD4+ activated memory (CD45+, RO+) T cells, a dominant subset of T cells present in RA synovial tissues. Raised levels of IL17 have been reported in RA synovium and synovial fluids. IL17 is a pleiotropic cytokine that can stimulate proinflammatory cytokine production from a variety of cell types present within the joint, including macrophages, synovial fibroblasts, and chondrocytes. Taken together, these data suggest a potential role for IL17 in the initiation and perpetuation of inflammation in RA and other inflammatory arthritides.

Articular cartilage is a highly specialised tissue that allows smooth joint articulation. Cartilage is synthesised and maintained by chondrocytes, and is composed primarily of water, proteoglycan, and type II collagen. Entrained within the type II collagen fibrillar network are proteoglycan molecules that pull water into the tissue. A rapid release of proteoglycan can be initiated from cartilage by stimulation with cytokines such as IL1 and TNFα, but this matrix component can be replaced relatively quickly. In contrast, collagen is much less readily released, but when collagen breakdown does occur, the structural integrity of the tissue is irreversibly lost. Degradation of type II collagen, therefore, represents a key control point in cartilage turnover.

A family of closely related enzymes, the matrix metalloproteinases (MMPs), collectively can degrade all the components of the extracellular matrix. Of these, the mammalian collagenases (MMP-1, MMP-8, and MMP-13) specifically cleave triple helical collagen to give characteristic three quarter and one quarter fragments, which can then undergo further proteolysis. Collagenases are known to be present within the rheumatoid joint and can be localised to rheumatoid tissues. MMPs are synthesised aszymogens that are activated by proteolytic removal of the propeptide region, and these active enzymes are inhibited by the tissue inhibitors of metalloproteinases (TIMPs). Regulation of these enzymes is critical to the turnover of the extracellular matrix.

Recent reports have indicated a role for IL17 in the turnover of connective tissues in RA. IL17 can inhibit the synthesis, as well as stimulate the breakdown, of type I collagen in RA synovium and bone explants. Moreover, the spontaneous release of type I collagen fragments from RA synovium and bone ex vivo was at least partially mediated by endogenous IL17. Animal studies have also suggested a role for IL17 in several inflammatory joint diseases.
models of arthritis. For cartilage, there are no reports to date on the effects of IL17 on type II collagen release, although IL17 has been shown to inhibit proteoglycan synthesis and stimulate proteoglycan loss in murine articular cartilage.

This study seeks to study further the role of IL17 in cartilage destruction. Because collagen loss represents the irreversible step in cartilage destruction, we investigated the ability of IL17 to promote type II collagen release from cartilage and the role of MMPs in this process. MMP inhibitors and a number of anti-inflammatory agents were also assessed for their effect on IL17-induced cartilage collagen degradation. Moreover, we investigated the ability of IL17 to synergise with several other proinflammatory cytokines known to be present in the rheumatoid joint, including TNFα, IL1, OSM, and IL6.

MATERIALS AND METHODS

Culture medium and test reagents

Cytokines, growth factors, and the soluble IL6 receptor (sIL6R) were all recombinant human. IL6, IL11, IL17, ciliary neurotrophic factor (CNTF), TNFα, transforming growth factor β1 (TGFβ1), insulin-like growth factor 1 (IGF1) and sIL6R were purchased from R&D Systems (Abingdon, UK). OSM and leukaemia inhibitory factor (LIF) were kindly provided by Professor J Heath (University of Birmingham, Edgbaston, UK). Cardiotrophin-1 (CT-1) was a generous gift from Dr D Pennica (Genentech, San Francisco, CA). IL1α and IL4 were produced in-house. All cytokines were stored at −70°C and diluted into culture medium immediately before use. Recombinant human TIMP-1 was produced in-house.

Figure 1 Effect of IL17 on the release of proteoglycan and collagen, and the production of collagenolytic activity, from bovine nasal cartilage in explant culture. Three discs of cartilage per well in quadruplicate were cultured for 14 days in control medium ± IL17 (0.4–50 ng/ml). Supernates were harvested at day 7, replenished with identical treatments and harvested on day 14. The levels of (A) GAGs (as a measure of proteoglycan), and (B) OHPro (as a measure of collagen) released into the medium by day 7 and day 14, respectively, were determined as described in the “Materials and methods”. Results were expressed as a percentage of the total (mean (SD)). (C) Active and total collagenolytic activities (open and closed bars, respectively) present in day 14 media were determined by bioassay. (D) TIMP-1 (70 U/ml) was included in some bioassays of day 14 media to assess its effect on the collagenolytic activity present. Bonferroni’s multiple comparison test was used to compare IL17 with control (A–D), and the same test was used to compare IL17 with control or IL17 + TIMP-1 in the bioassay (D), where ***p < 0.001; **p < 0.01.
broad spectrum metalloproteinase inhibitor, was generously provided by British Biotech Pharmaceuticals Ltd (Oxford, UK). Molecular biology reagents were purchased from Ame-

Phosphate buffer, pH 6.5, containing 5 mM EDTA and 5 mM

cartilage was digested with papain (4.5 mg/ml) in 0.1 M

agents such as IGF1

cytokine(s). Moreover, because this cartilage model is one of

alter the metabolism of cartilage in the absence of exogenous

Serum is excluded from cartilage explants as it can markedly

increase in LDH levels with any of the

performed when new cytokine combinations are used with

Figure 2

Effect of metalloproteinase inhibitors on IL17-induced
collagen release from cartilage. Bovine nasal cartilage explants were
cultured as described in fig 1 except that IL17 was at 100 ng/ml
and either TIMP-1 (100 U/ml) or BB-94 (10 µmol/l) were also
included. Day 14 culture supernates were assayed for OHPro as a
measure of collagen, and the results expressed as a percentage
release of the total (mean (SD)). Bonferroni’s multiple comparison
test was used to compare IL17 alone with control or IL17 + inhibitor,
where ***p<0.001.

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL17 + IL-4</td>
<td>4</td>
<td>50–90</td>
</tr>
<tr>
<td>IL17 + IL-13</td>
<td>3</td>
<td>50–80</td>
</tr>
<tr>
<td>IL17 + TGF-β1</td>
<td>7</td>
<td>75–95</td>
</tr>
<tr>
<td>IL17 + IGF-1</td>
<td>3</td>
<td>60–90</td>
</tr>
</tbody>
</table>

Bovine nasal cartilage explants were incubated for 14 days as
described in fig 1 with IL17 (50 ng/ml) in the presence of
anti-inflammatory agents including IL4 or IL-13 at 50 ng/ml; TGF-β1 at
20 ng/ml; IGF-1 at 200 ng/ml. No collagen release occurred when
cartilage explants were treated with these anti-inflammatory agents
alone. Collagen release, measured as OHPro, was determined as
described in the “Materials and methods”. The percentage inhibition
values were calculated relative to control- and IL17-induced collagen
release such that the collagen release mediated by control and IL17
were designated as 0% and 100%, respectively, for each individual
experiment (n = the number of separate cartilage samples that were
assessed). For all experiments the Bonferroni’s multiple comparison
test was used to compare IL17 alone with IL17 + anti-inflammatory
agent; the inhibition observed was statistically significant for all
treatments (p<0.01).

Proteoglycan, collagen, and collagenolytic activity
assays

Culture supernates and cartilage digests were assayed for sul-
phated glycosaminoglycans (GAGs) (as a measure of proteo-
glycan) and hydroxyproline (OHPro) (as a measure of
collagen) using modifications of the 1,9-dimethylmethylene
blue dye binding11 and OHPro12 assays, respectively, as
previously described. The release of proteoglycan and
collagen was expressed as a percentage of the total.
Collagenolytic activities present in the supernates from carti-
lage explants were determined by a 96 well plate modification
of the diffuse fibril assay using ‘H-acetylated collagen.13
Procollagenases were artificially activated by co-incubation
with 0.7 mM 4-aminophenylmercuric acetate in order to
obtain total (pro- + active) collagenolytic activity. One unit of
collagenase activity degrades 1 µg of collagen per minute at
37°C. One unit of inhibitory activity inhibits two units of col-
lagenolytic activity by 50%.

Cell culture, RNA isolation, and northern blot analysis

Primary bovine nasal chondrocytes were extracted from carti-
lage as previously described.10 Primary chondrocytes were cul-
tured to confluence in control medium supplemented with
10% fetal calf serum. Cells were then serum-starved overnight
before stimulation with test reagents in serum-free control
medium for 24 hours as described previously.10 Total cellular
RNA was isolated using the RNeasy kit (Qiagen, Crawley, UK)
under RNase free conditions according to the manufacturer’s
instructions. Equal amounts (20 µg/lane) of total RNA were
fractionated on 1% agarose-0.4 M formaldehyde gels and
stained with ethidium bromide to check for integrity. RNA
was transferred to GeneScreen Plus membrane (NEN, Houns-
low, UK) by capillary transfer. Blots were then sequentially
hybridised with [α-32P]dCTP-labelled cDNA probes and
washed as previously described.10 Probe-specific mRNA was
detected by exposure to Phosphor screen (Molecular Dyna-
ics, Chesham, UK) and subsequent visualisation with a
STORM 860 Phosphorimager (Molecular Dynamics). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used to assess equal loading of RNA.
Statistical analysis
The data were analysed with GraphPad Prism v2.01 (GraphPad Software Inc, San Diego, USA). Pairwise multiple comparisons were performed using the Bonferroni multiple comparison test. Values of p<0.05 were considered significant.

RESULTS
Effect of IL17 on the release of proteoglycan and collagen from cartilage explants
IL17 (0.4–50 ng/ml) induced a dose dependent breakdown of bovine nasal cartilage (fig 1). By day 7 of culture a significant and reproducible release of proteoglycan was observed with IL17 at concentrations between 2 and 50 ng/ml (fig 1A). Significant collagen release was induced by IL17 in a dose dependent manner by day 14 (fig 1B). The levels of collagen release at 50 ng/ml IL17 showed marked variation (ranging from 6 to 95% release) in six separate experiments using different cartilage samples, similar to that seen with IL1 alone. However, statistically significant collagen release was seen in almost all experiments compared with control (5/6 experiments; p<0.05). When IL17 alone did not induce significant collagen release, it always promoted marked proteoglycan release (p<0.001, n=6;
see below) and always synergised to promote significant collagen release (see below). IL17 alone also induced a significant increase in the collagenolytic activity detected in day 14 culture supernates (fig 1C). Although no collagenolytic activity was detected in the supernates of cartilage stimulated with 2 ng/ml IL17, a significant amount of procollagenase activity was present. The IL17-induced collagenolytic activity was completely inhibited by the exogenous addition of TIMP-1 (70 U/ml) into the bioassay (fig 1D).

Effect of metalloproteinase inhibitors on IL17-induced collagen release

Bovine nasal cartilage explants were cultured with IL17 (100 ng/ml) in the presence or absence of TIMP-1 (100 U/ml) and the hydroxamate based metalloproteinase inhibitor BB-94 (10 µmol/l) for 14 days. IL17-induced collagen release from explant cultures was completely inhibited by co-incubation with these inhibitors (fig 2).

Effects of anti-inflammatory agents on IL17-induced cartilage collagen release

Bovine nasal cartilage explants were incubated for 14 days with IL17 (50 ng/ml) in combination with IL4 (50 ng/ml), IL13 (50 ng/ml), TGFβ1 (20 ng/ml), or IGF1 (200 ng/ml). IL17-induced collagen release was inhibited by all these anti-inflammatory agents (*p < 0.01); owing to the variable collagen release seen with IL17 alone, at least three separate cartilage samples were assessed (table 1).

Effect of IL17 in combination with TNFα, IL1, or OSM on cartilage breakdown

To determine the effect of proinflammatory cytokines on IL17-induced cartilage breakdown, bovine nasal cartilage was incubated for 14 days with IL17 (0.01–50 ng/ml) ± TNFα (2 and 10 ng/ml), IL1α (0.1 ng/ml), or OSM (10 ng/ml). TNFα, IL1α, and OSM all synergised markedly with IL17 at suboptimal doses (that is, ≤10-fold less is required in combination
than when alone) to induce proteoglycan release (fig 3). With IL17 alone, modest but significant collagen release was observed at doses between 10 and 50 ng/ml (fig 4). However, when IL17 at the suboptimal doses of 0.05 ng/ml and 0.5 ng/ml was combined with TNFα (10 and 2 ng/ml, respectively), a synergistic collagen release was seen (fig 4A). This synergy was even more marked with increasing concentrations of IL17. Similarly, IL17 at 0.08 ng/ml synergised with IL1α to induce significant collagen loss (fig 4B), and though less marked, a synergistic release of collagen was also observed with IL17 (10 ng/ml) in combination with OSM (fig 4B).

Effect of IL17 in combination with glycoprotein 130 binding cytokines on collagen release

OSM is a member of the glycoprotein 130 (gp130) binding cytokine family, which includes IL6, IL11, LIF, CNTF, CT-1, all at 50 ng/ml, or IL17 [50 ng/ml] ± OSM (10 ng/ml) or IL6 (50 ng/ml) ± sIL6R [200 ng/ml]. Collagen release was determined as a measure of OHPro as described in “Materials and methods”, and the release by day 14 expressed as a percentage of the total (mean (SD)). Bonferroni’s multiple comparison test was used to compare IL17 alone with control, and IL17 + test reagent(s) with IL17 alone or IL17 + test reagent, where ***p<0.001.

Figure 5 Effect of IL17 in combination with gp130 binding cytokines on collagen release from cartilage. Bovine nasal cartilage explants were cultured as described in fig 1 with (A) IL17 [50 ng/ml] ± gp130 binding cytokines (OSM, 10 ng/ml; IL6, IL11, LIF, CNTF, CT-1, all at 50 ng/ml), or (B) IL17 [50 ng/ml] ± OSM (10 ng/ml) or IL6 (50 ng/ml) ± sIL6R [200 ng/ml]. Collagen release was determined as a measure of OHPro as described in “Materials and methods”, and the release by day 14 expressed as a percentage of the total (mean (SD)). Bonferroni’s multiple comparison test was used to compare IL17 alone with control, and IL17 + test reagent(s) with IL17 alone or IL17 + test reagent, where ***p<0.001.

Effect of MMP inhibitors on the synergistic release of collagen from IL17-stimulated cartilage

Bovine nasal cartilage explants were cultured with IL17 ± TNFα (2 ng/ml) or IL1α (0.2 ng/ml) or OSM (10 ng/ml) in the presence or absence of TIMP-1 (100 U/ml) and the hydroxamate based metalloproteinase inhibitor BB-94 (10 µmol/l) for 14 days. The marked synergistic releases of collagen induced by these combinations were completely abrogated by the inclusion of TIMP-1 or BB94 (fig 6).

Effect of IL17 alone and in combination with proinflammatory cytokines on MMP expression in chondrocytes

Primary chondrocytes from bovine nasal cartilage were incubated with IL17 in combination with the gp130 binding cytokines. Only OSM synergised with IL17 to induce collagen release (fig 5A), but the inclusion of sIL6R also enabled IL6 to promote synergistic cartilage collagen breakdown when in combination with IL17 (fig 5B).
Northern blot analyses showed that IL17 alone induced the expression of MMP-1, MMP-3, and MMP-13 mRNA over control levels at doses between 25 and 100 ng/ml (figs 7 and 8). MMP-13 expression was the most consistent and marked after stimulation with IL17 alone. TNFα (10 ng/ml) and IL1α (0.2 ng/ml) both synergised potently with IL17 (5–100 ng/ml) to markedly induce MMP-1, MMP-3, and MMP-13 expression; this induction was maximal even at 5 ng/ml IL17 (fig 7). IL17 (2–50 ng/ml) also synergised with OSM (10 ng/ml) to induce expression of these MMPs; maximal effects were achieved with IL17 at 50 ng/ml (fig 8A). This synergistic induction of MMPs was also seen with IL17 (50 ng/ml) in combination with IL6 (50 ng/ml) in the presence of sIL6R (200 ng/ml) (fig 8B). TIMP-1 mRNA levels were not significantly modulated by IL17 alone (figs 7 and 8). Only the combination of TNFα and IL17 (5–100 ng/ml) reduced TIMP-1 expression (fig 7). IL6 + sIL6R induced TIMP-1 expression when in combination with IL17 (50 ng/ml) (fig 8B). A minor induction of TIMP-1 mRNA was also seen with OSM in combination with IL17 at 50 ng/ml (but not at 2 and 10 ng/ml); OSM alone stimulated significant TIMP-1 expression (fig 8A).

DISCUSSION

Infiltration of T cells into the synovial joint is considered to be an early and important event in the pathogenesis of RA, but the role of these cells in cartilage destruction is not clearly understood. Recently, the T cell derived cytokine IL17 was shown to inhibit cartilage proteoglycan synthesis ex vivo, as well as induce its degradation both in vivo and ex vivo. This study confirms that IL17 can promote marked proteoglycan loss from cartilage, and for the first time demonstrates that IL17 can induce chondrocyte mediated cartilage collagen breakdown. This is particularly relevant because it has previously been shown that, although proteoglycan loss is reversible, the release of type II collagen from cartilage results in irreversible tissue damage. Collagen degradation, therefore, represents a key control point in cartilage turnover.

Figure 6 Effect of metalloproteinase inhibitors on the synergistic release of collagen from cartilage stimulated with IL17 in combination with TNFα, IL1, or OSM. Bovine nasal cartilage explants were cultured as described in fig 3 except that TIMP-1 (100 U/ml) or BB-94 (10 µmol/l) were included. (A) IL17 (50 ng/ml) was combined with TNFα (2 ng/ml), and (B) IL17 (20 ng/ml) was combined with IL1α (0.2 ng/ml) or OSM (10 ng/ml). Collagen release was determined as a measure of OHPro as described in “Materials and methods”, and the release by day 14 expressed as a percentage of the total (mean (SD)). Bonferroni’s multiple comparison test was used to compare each cytokine combination with the same combination + inhibitor or control, where ***p<0.001.
from primary bovine nasal cartilage chondrocytes was harvested after stimulation for 24 hours with IL17 (5–100 ng/ml) ± other proinflammatory mediators. Than that for proteoglycan release as is typically seen with this study. Furthermore, levels of TNF
mean levels are in excess of the suboptimal IL17 doses used in IL17 in RA synovial fluids have been reported, OSM and IL6 (when in the presence of sIL6R). Raised levels of IL17 synergised with the gp130 binding cytokines TNF
addition, IL17 synergised with the proinflammatory cytokines TNF
IL17 in combination with OSM or IL6/sIL6R. Raised levels of cytokines TNF
Our data indicate that IL17 may also be an effective therapeutic target in disease, and given the redundancy and overlap that exists amongst cytokines, a combinatorial anticytokine approach including anti-IL17 and anti-TNFα may be required. Indeed, blockade of endogenous IL17 has been shown to further inhibit the release of type I collagen from human synovium and bone after TNFα blockade.

In addition to the direct effects of IL17 on cartilage, IL17 can induce the production of a number of cytokines, such as IL1, IL6, and TNFα, from various cell types present in the joint. Such production may then result in synergistic interactions between this T cell derived cytokine and these other proinflammatory mediators, leading to cartilage destruction. In this study we have also shown that IL17 potently synergises with several proinflammatory cytokines to promote the release of type II collagen from cartilage. Furthermore, IL17 can promote the chemoattraction of neutrophils through the secondary cytokine production of IL8. Raised levels of IL7 may, therefore, also contribute to the accumulation of neutrophils within the rheumatoid joint. This potential role for IL17 may also be significant because neutrophils can release OSM from intracellular stores upon activation.

IL17-induced cartilage collagen loss was shown to be accompanied by an increase in collagenolytic activity that was inhibited by TIMP-1. Moreover, the collagen release induced by IL17, both alone and in combination with TNFα, IL1, and OSM, was abrogated by TIMP-1 and the broad spectrum metalloproteinase inhibitor BB-94. These findings clearly indicate that IL17-induced collagen release is MMP dependent. We have shown that IL17 can up regulate the expression of the collagenases MMP-1 and MMP-13 in chondrocytes, implicating them in this cytokine mediated catabolic process. MMP-13 expression was the more marked and consistently induced by IL17 alone, perhaps indicating a direct role for this collagenase in IL17-induced collagen degradation. This may be especially relevant given the preference of MMP-13 for type II collagen and its reported ability to cleave this macromolecule five to 10 times more efficiently than MMP-1. sIL6R have also been shown to be raised in RA synovial fluids, Thus, given its ability to synergistically promote cartilage collagen breakdown ex vivo, the presence of IL17 within the proinflammatory milieu of the rheumatoid joint may contribute significantly to the destruction of cartilage in vivo. Anti-TNFα treatment has proved to be efficacious in the treatment of RA. Our data indicate that IL17 may also be an effective therapeutic target in disease, and given the redundancy and overlap that exists amongst cytokines, a combinatorial anticytokine approach including anti-IL17 and anti-TNFα may be required. Indeed, blockade of endogenous IL17 has been shown to further inhibit the release of type I collagen from human synovium and bone after TNFα blockade.

The collagen release induced by IL17 alone was less marked than that for proteoglycan release as is typically seen with other proinflammatory mediators. However, at suboptimal doses IL17 synergised potently with the proinflammatory cytokines TNFα and IL1 to promote cartilage breakdown. In addition, IL17 synergised with the gp130 binding cytokines OSM and IL6 (when in the presence of sIL6R). Raised levels of IL17 in RA synovial fluids have been reported, and these mean levels are in excess of the suboptimal IL17 doses used in this study. Furthermore, levels of TNFα, IL1, OSM, IL6, and sIL6R have also been shown to be raised in RA synovial fluids, Thus, given its ability to synergistically promote cartilage collagen breakdown ex vivo, the presence of IL17 within the proinflammatory milieu of the rheumatoid joint may contribute significantly to the destruction of cartilage in vivo. Anti-TNFα treatment has proved to be efficacious in the treatment of RA. Our data indicate that IL17 may also be an effective therapeutic target in disease, and given the redundancy and overlap that exists amongst cytokines, a combinatorial anticytokine approach including anti-IL17 and anti-TNFα may be required. Indeed, blockade of endogenous IL17 has been shown to further inhibit the release of type I collagen from human synovium and bone after TNFα blockade.

In addition to the direct effects of IL17 on cartilage, IL17 can induce the production of a number of cytokines, such as IL1, IL6, and TNFα, from various cell types present in the joint. Such production may then result in synergistic interactions between this T cell derived cytokine and these other proinflammatory mediators, leading to cartilage destruction. In this study we have also shown that IL17 potently synergises with several proinflammatory cytokines to promote the release of type II collagen from cartilage. Furthermore, IL17 can promote the chemoattraction of neutrophils through the secondary cytokine production of IL8. Raised levels of IL7 may, therefore, also contribute to the accumulation of neutrophils within the rheumatoid joint. This potential role for IL17 may also be significant because neutrophils can release OSM from intracellular stores upon activation.

IL17-induced cartilage collagen loss was shown to be accompanied by an increase in collagenolytic activity that was inhibited by TIMP-1. Moreover, the collagen release induced by IL17, both alone and in combination with TNFα, IL1, and OSM, was abrogated by TIMP-1 and the broad spectrum metalloproteinase inhibitor BB-94. These findings clearly indicate that IL17-induced collagen release is MMP dependent. We have shown that IL17 can up regulate the expression of the collagenases MMP-1 and MMP-13 in chondrocytes, implicating them in this cytokine mediated catabolic process. MMP-13 expression was the more marked and consistently induced by IL17 alone, perhaps indicating a direct role for this collagenase in IL17-induced collagen degradation. This may be especially relevant given the preference of MMP-13 for type II collagen and its reported ability to cleave this macromolecule five to 10 times more efficiently than MMP-1. sIL6R have also been shown to be raised in RA synovial fluids, Thus, given its ability to synergistically promote cartilage collagen breakdown ex vivo, the presence of IL17 within the proinflammatory milieu of the rheumatoid joint may contribute significantly to the destruction of cartilage in vivo. Anti-TNFα treatment has proved to be efficacious in the treatment of RA. Our data indicate that IL17 may also be an effective therapeutic target in disease, and given the redundancy and overlap that exists amongst cytokines, a combinatorial anticytokine approach including anti-IL17 and anti-TNFα may be required. Indeed, blockade of endogenous IL17 has been shown to further inhibit the release of type I collagen from human synovium and bone after TNFα blockade.
the first report of collagenase induction by IL17 in chondrocytes, although induction of the procollagenase activator MMP-3 has been previously shown and is confirmed in this study. This induction of MMP-3 may contribute significantly to IL17-induced cartilage collagen breakdown through the activation of proMMP-1 and proMMP-13.

The lack of an effect of IL17 alone on TIMP-1 mRNA expression in chondrocytes has also been shown in RA synovocytes. Inhibition of TIMP-1 mRNA expression was found to be through the inhibition of MMP-1-induced collagen breakdown by IL17, a situation that would favor an increase in the net collagenolytic activity induced by this cytokine combination. IL17 also synergized with the gp130 binding cytokines OSM and IL6/sIL6R to induce both MMP and TIMP-1 expression in chondrocytes. A similar induction of TIMP-1 occurs after IL1 + OSM or IL1 + OSM + IL6/sIL6R, but IL17 is transient.

Time course studies would confirm whether this transient effect is also found with IL17 in combination with OSM and IL6/sIL6R.

We have also clearly shown that anti-inflammatory molecules can influence the catabolic effects of IL17. Attenuation of the IL17-induced inhibition of proteoglycan synthesis by IL4 has been previously demonstrated. In addition, we have previously shown that IL1 + OSM-induced collagen breakdown is inhibited by IL4, IL13, TGFβ1 and IGF1, and such observations also extend to TNFα-induced collagen release for TGFβ1 and IGF1. This study demonstrates that all these anti-inflammatory agents inhibited IL17-induced collagen breakdown. The inhibitory effects of TGFβ1 and IGF1 on IL1/OSM or TNFα appear to be through the inhibition of MMP expression, whereas the effects of IL4 and IL13 appear to be through the blockade of procollagenase activation. Similar mechanisms seem to be responsible for the inhibitory actions of these agents on IL17-induced collagen catabolism (data not shown).

In conclusion, this study has demonstrated several novel properties of the T cell derived cytokine, IL17, in that it can promote the release of type II collagen from cartilage. This process is catabolic mediated and MMP dependent. Moreover, IL17 can synergise with a number of other proinflammatory cytokines associated with RA through a synergistic induction of collagenase (MMP-1 and MMP-13) enzymes. The infiltration and activation of T cells into RA synovium is considered an early event in the disease process. Thus, we present further evidence to suggest a role for IL17 in the pathogenesis of RA, and propose that IL17 may act as a potent upstream mediator in inflammatory joint disease by initiating a proinflammatory cascade as well as directly promoting cartilage destruction.

ACKNOWLEDGEMENTS

We are indebted to British Biotech Pharmaceuticals Ltd for their generous supply of BB-94. We are grateful to Dr S Young-Min for assistance in the statistical analyses of the data. Aspects of this work were funded by the Arthritis Research Campaign, Glaxo-SmithKline, and the Wellcome Trust.

Authors’ affiliations

P J Koshy, N Henderson, C Logan, T E Cawston, A D Rowan, Department of Rheumatology, School of Clinical Medical Sciences, The Medical School, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne NE4 2HH, UK

P F Life, Glaxo Wellcome R&D, Stevenage, UK

REFERENCES

13 Jubb RW, Fall HB. The breakdown of collagen by chondrocytes. J Pathol 1980;130:159-62

16 Tellow LC, Wooley DE. Comparative immunolocalization studies of collagenase 1 and collagenase 3 production in the rheumatoid lesion, and by human chondrocytes and synoviocytes in vitro. Br J Rheumatol 1998;37:64-70

18 Chaboud M, Lubberts E, Joosten L, van den Berg W, Miosse P. IL-17 derived from T cells in the bone and synovium contribute to joint degradation in rheumatoid arthritis. Arthritis Rheum 2001;43:1687-77

26 Huil W, Rowan AD, Cawston TE. Modulation of the expression of matrix metalloproteinase and tissue inhibitors of metalloproteinases by TGFβ1 and IGF1 in primary human articular and bovine nasal cartilages stimulated with TNF-α. Cytokine 2001;16:31-35

Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines

P J Koshy, N Henderson, C Logan, P F Life, T E Cawston and A D Rowan

Ann Rheum Dis 2002 61: 704-713
doi: 10.1136/ard.61.8.704

Updated information and services can be found at:
http://ard.bmj.com/content/61/8/704

These include:

References
This article cites 41 articles, 16 of which you can access for free at:
http://ard.bmj.com/content/61/8/704#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Immunology (including allergy) (5144)
- Inflammation (1251)
- Biological agents (545)
- Degenerative joint disease (4641)
- Drugs: musculoskeletal and joint diseases (700)
- Musculoskeletal syndromes (4951)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/