We read with interest the article by Nolla et al demonstrating that treatment of rheumatoid arthritis (RA) with anti-tumour necrosis factor α (anti-TNFα) induces subtle changes in the cytokine network such as down regulation of anti-inflammatory cytokine interleukin 6 (IL6), but does not affect the persistently high plasma levels of transforming growth factor β (TGFβ). Furthermore, they suggest that the latter finding indicates the existence of unknown mechanisms for TGFβ overexpression in RA that may predispose a patient to severe infections and altered tumour defence.

In contrast to Cuchacovich et al, one of five patients with RA treated with methotrexate and healthy controls did not have an altered tumour defence.

References

Authors' reply
We read with interest the letter by Cuchacovich and Espinoza commenting on our previous paper, which, based on results of DNA microarrays showing that increased plasma levels of transforming growth factor β (TGFβ) persist in the course of anti-tumour necrosis factor α (anti-TNFα) treatment in rheumatoid arthritis (RA), suggests that patients may not have an altered tumour defence.

Complex effects of TGFβ on tumour development and progression, as well as cancer metastasis have been demonstrated in numerous studies. A similar result of these studies, raised levels of TGFβ seen in patients with RA are thought to contribute to an altered tumour defence.

In our own additional experiments we monitored changes in the expression profiles of mononuclear cells from peripheral blood in the course of anti-TNF treatment in RA in 10 patients using the same human genome U95a Affymetrix chip. By applying a different experimental setting than Cuchacovich et al., different results were found. Only a small number of genes were found to be regulated in five or more of the 10 patients in either direction after anti-TNF treatment compared with baseline. Among these genes were proinflammatory cytokines, chemokines, apoptosis related proteins, and proteins involved in the cell cycle. Interestingly, different regulation patterns were found in our patients. In contrast to Cuchacovich et al., no down regulation was found in receptors for interferon γ, interleukin 10, or in either TGFβ receptors (TGFβRI and TGFβRII) within the first six days of anti-TNF treatment. Expression of oncogenes Jun B, c-myc, fos and ras, which may have an impact on tumour defence.

If you have a burning desire to respond to a paper published in the Annals of the Rheumatic Diseases, why not make use of our “rapid response” option? Visit our website (www.annrheumdis.com), find the paper that interests you, and send your response via email by clicking on the “eletters” option in the box at the top right hand corner.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eletters” on our homepage.

The editors will decide as before whether also to publish it in a future paper issue.

Usefulness of bone densitometry in postmenopausal women with clinically diagnosed vertebral fractures

We read with interest the article by Nolla et al, which demonstrates that only 3% of women with symptomatic non-rheumatic vertebral fracture have normal bone mineral density (BMD). We agree with their conclusions that in this clinical setting measurement of BMD is not required to confirm a diagnosis of osteoporosis before starting treatment.
A large number of studies have shown that a previous history of vertebral fracture increases the risk of future vertebral and non-vertebral fracture, independently of BMD. Vertebral fractures are also associated with significant morbidity, leading to an impaired quality of life and increased mortality. A recent study by Lindsay et al demonstrated the speed of disease progression in osteoporosis, with 20% of patients experiencing a new incident vertebral fracture within 12 months after a vertebral fracture. These data suggest that osteoporosis treatment should be started as soon as possible after a fracture has been diagnosed, as any delay in initiating treatment while waiting for bone density to be measured may put the patient at risk of further fractures. The availability of dual energy absorptiometry (DXA) is poor in the United Kingdom in comparison with some other European countries. The Advisory Group on Osteoporosis noted that in the UK there were 1.6 DXA machines per million population, compared with 2.9 in the USA and 6.6 in France. The limitation of DXA machine provision in the UK compared with the USA has also led to long waiting lists for BMD measurements and a potential delay in starting osteoporosis treatment.

Under these circumstances, what is the evidence that patients can be treated solely on the basis of vertebral fracture without the need for BMD measurement? The majority of studies have evaluated drug treatment in patients with low BMD alone, or with low BMD and prevalent vertebral fractures. Studies of risedronate,7 raloxifene,8 and parathyroid hormone9 have, however, included patients with two or more asymptomatic vertebral fractures in the absence of BMD readings.

In the study by Harris et al80% of patients had two or more vertebral fractures, and analysis of this subgroup showed that patients treated with risedronate had a 43% reduction in new vertebral fractures at three years compared with those receiving placebo. A further study of risedronate recruited patients solely on the basis of vertebral fracture history (≥2) irrespective of BMD and demonstrated that active treatment significantly reduced the risk of new vertebral fractures by 49% and of new non-vertebral fractures by 33% over three years compared with placebo.8

Studies of raloxifene and parathyroid hormone also included patients with a vertebral fracture history alone. Although the results of these studies showed an overall reduction in fracture risk, subgroup analysis of the patients with two or more vertebral fractures and no BMD measurement was not performed. It is therefore not possible to determine accurately the effect of treatment in this group.

We feel that the evidence suggests that patients presenting with two or more non-traumatic vertebral fractures should be considered for treatment of osteoporosis without the need for measurement of BMD, after a metabolic or secondary cause of fracture has been excluded. This is reflected in some of the recent guidelines for the management of osteoporosis.

References


Author’s reply

We thank Dr Moss and Dr Keen for their interest in our article and for their comments, especially relevant for clinical practice. We agree that whenever the availability of DXA is limited, treatment for osteoporosis in postmenopausal women presenting with non-traumatic vertebral fractures can be started without the measurement of BMD.

J M Nolla
Department of Rheumatology, Ciutat Sanitària i Universitaria de Bellvitge, Barcelona, Spain
Correspondence to: Dr J M Nolla; 28634app@comb.es

Infection and SLE

We read with great interest the leader by Gilliland and Tsokos on the prophylactic use of antibiotics and immunisation in systemic lupus erythematosus (SLE).1 We strongly agree that prophylaxis against tuberculosis should be considered in certain groups of patients with SLE, and in particular that co-trimoxazole prophylaxis should be used in patients receiving potent cytotoxic treatment such as cyclophosphamide.

However, the important relationship between hypocomplementaemia, splenic dysfunction, and infection in SLE should also be emphasised. In Western countries, pyogenic infection in SLE is a major cause of morbidity and mortality.2 Infection with Streptococcus pneumoniae and Neisseria meningitidis appears to be particularly important.3 We have recently seen in our unit six patients with SLE who died in the past five years. Of these, five had overwhelming infection with S pneumoniae.

Defective clearance of bacteria by the spleen as a result of functional hypocomplementaemia is likely to be the cause of the increased risk of infection with S pneumoniae and N meningitidis in SLE. Corticosteroids and other immunosuppressive drugs are also likely to play a part. The spleen is important in the clearance of particulate immune complexes, such as bacteria opsonised with antibody and complement component C3. Its unique microvascular anatomy and perisinusoidal macrophages bearing Fc and complement receptors are essential in this process. Defective splenic clearance of particulate immune complexes has previously been seen in SLE.5 Furthermore, patients with SLE often have chronic hypocomplementaemia, even when their disease is inactive, with low levels of C3 and C4 resulting in defective opsonisation of immune complexes. This, together with an acquired reduction in levels of complement receptor type 1 on the surface of erythrocytes, impairs delivery of immune complexes to the spleen. Also important to mention, although only representing a small group of patients with SLE, are those with homozygous deficiencies of early components of the classical complement pathway. Not only do these deficiencies predispose to the development of SLE but they also increase the risk of infection. For example, among 41 patients with C1q deficiency, 13 had recurrent bacterial infections, including meningitis and pneumococcal pneumonia.6 Complement is known to have a vital role in host defence against infection, and may also be important in the processing of Gram negative organisms.7 Gram negative infection is also an important cause of death in certain cohorts of patients with SLE.

An increased risk of infection with S pneumoniae, N meningitidis, and Haemophilus influenzae type B is also seen after surgical splenectomy. Such patients should receive lifelong prophylaxis with penicillin V and immunisation with pneumococcal polysaccharide vaccine. Children and adults with splenectomy or severe splenic dysfunction due to, for example, coeliac disease, should also receive a single dose of H influenzae type B vaccine. We have previously recommended that patients with SLE and chronic hypocomplementaemia should also receive prophylactic penicillin V and wish to reiterate the importance of these measures in order to prevent life threatening infection in this disease.

A L Hepburn, K A Davies
Rheumatology Section, Division of Medicine, Imperial College School of Science, Technology and Medicine, Hammersmith Hospital, London W12 ONN, UK
Correspondence to: Dr A L Hepburn; a.hepburn@ic.ac.uk

References

hypocomplementaemia. The following possible risk factors: female sex, case series of patients with SLE and neisserial hypocomplementaemia is not clear. In a small tic antibiotics for patients with SLE and infections, the evidence to support prophylactics in patients with SLE who are asplenic or have persistent hypocomplementaemia, but this should be further investigated with more definitive studies. For now, the best approach for doctors caring for patients with SLE is to immune them for vaccinations, consider antibiotic prophylaxis in certain situations, and maintain a high degree of awareness for the diagnosis of bacteria and other pathogens, especially those that are prevalent in the community in which you care for the patients.

W R Gilliland, G C Tsokos
USUHS/WRAIR, 503 Robert Grant Road, Bldg 503, Rm 1A32, Silver Spring, MD 20910-7500, USA

Correspondence to: Dr G C Tsokos; gtskokos@usuhs.mil

References

Was it a case of Takayasu arteritis?

Recently, the case of a 9 year old boy presenting with cardiac failure was presented in the Annals of the Rheumatic Diseases. It was reported as a case of Takayasu’s arteritis in a child with a CD4+ lymphopenia and dysga
maglobulinaemia. I have a number of problems with this case:

- As presented in table 1 in the letter, this 9 year old child has a normal CD4 cell count with a low total lymphocyte count. Is the table wrong or did this child actually have a normal CD4 lymphocyte count?
- The dysga
maglobulinaemia actually consisted of a modest rise in the IgG level, with a normal IgA, and a borderline low IgM level of rather questionable relevance in such a sick young child.
- The evidence for Takayasu’s arteritis is rather circumstantial, based entirely on magnetic resonance imaging with some suggestive clinical findings in a very sick child presenting with cardiac failure. Surely in such a case, especially when the end result was death soon after initiating immunosuppressive treatment, attempts should have been made to secure a pathological diagnosis, either before or after the final outcome. No mention of this was made in the report.

I remain unconvinced that this was a case of Takayasu’s arteritis and there is no evidence presented to suggest that this child did have a CD4+ lymphopenia.

M D Smith
Flinders University of South Australia

Author’s reply

We thank Dr Smith for his comments and would like to reply to the points he made.

Firstly, we agree that the absolute CD4 number was not correct in the table. It was incorrectly converted in the editorial process from the value/mm³ and should have been 0.2×10^9/l rather than 2×10^9/l. We regret that this point was overlooked on the proofs.

Secondly, a polyclonal hypergammaglobulinaemia is present in one third of cases with Takayasu arteritis. The serum immunoglobulin levels of our patient are consistent with Takayasu arteritis. Dr Smith mentioned a modest rise in the IgG level, with a normal IgA level, but our patient had high levels of both IgG and IgA.

Finally, the classification criteria for Takayasu arteritis according to the American College of Rheumatology (ACR) are: (a) age at disease onset in years <40; (b) classification of the arms and legs; (c) decreased brachial artery pulse; (d) blood pressure difference >10 mm Hg, (e) bruit over subclavian arteries or aorta; (f) arteriogram abnormality. Our patients had all six of these criteria. In addition to the ACR criteria, our patient had one obligatory, one major, and five minor criteria for the clinical diagnosis of Takayasu’s disease according to Ishikawa’s criteria. These criteria comprise one obligatory criterion, two major criteria, and nine minor criteria. In addition to the obligatory criterion, one major and two or more minor criteria suggest a high probability of the presence of Takayasu’s disease.

These data prove that there is no reason to doubt the diagnosis of this case as Takayasu arteritis. Additionally, the patient had a low CD4 count associated with hypergammaglobulinaemia.

S S Kilic
Department of Paediatrics, Immunology Division, Uludag University Medical Faculty, Gökbel Bursa 16059, Turkey

Correspondence to: Dr S S Kilic; ssebenkili@uludag.edu.tr

Reference
Infection and SLE

A L Hepburn and K A Davies

Ann Rheum Dis 2002 61: 668-669
doi: 10.1136/ard.61.7.668

Updated information and services can be found at:
http://ard.bmj.com/content/61/7/668

These include:

References
This article cites 12 articles, 5 of which you can access for free at:
http://ard.bmj.com/content/61/7/668#BIBL

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/