Prolactin enhances the in vitro production of IgG in peripheral blood mononuclear cells from patients with systemic lupus erythematosus but not from healthy controls

A M Jacobi, W Rohde, H-D Volk, T Dörner, G-R Burmester, F Hiepe

Abstract

Objectives—Recent evidence suggests that prolactin (PRL) plays a part in the pathogenesis of systemic lupus erythematosus (SLE). Because B cell hyperreactivity and autoantibodies are characteristic hallmarks of SLE, this study aimed at assessing the impact of this pituitary hormone on IgG production by stimulating peripheral blood mononuclear cells (PBMC) with PRL.

Methods—PBMC from 11 patients with SLE assessed by the ECLAM score and eight healthy controls were incubated with PRL and cultured for seven days. IgG production was measured by enzyme linked immunosorbent assay (ELISA).

Results—Spontaneous IgG production of SLE PBMC was significantly enhanced compared with that found in healthy controls. After PRL stimulation, the IgG concentrations of supernatants from SLE PBMC were significantly higher than those of unstimulated PBMC (median 394 ng/ml). Of note, the physiological concentration of PRL (20 ng/ml) induced IgG production more effectively (median 1139 ng/ml) than PRL at 100 ng/ml (median 1029 ng/ml). In contrast, preincubation with PRL did not stimulate IgG production in normal PBMC. A significant correlation between PRL induced IgG production and the disease activity (ECLAM) of the patients with SLE was seen. Moreover, the maximum amount of PRL induced IgG depended on the serum PRL concentrations of the patients with SLE.

Conclusions—The results suggest that PBMC from patients with SLE have an extraordinarily high susceptibility to PRL, showing the most striking effect at a concentration usually found in vivo. This indicates a potential role for mild hyperprolactinaemia in the pathogenesis of SLE, influencing both IgG production and disease activity.

(Part Rheum Dis 2001;60:242–247)
Table 1 Characteristics of the patients with systemic lupus erythematosus analysed, clinical manifestations of the disease and other signs of disease activity underlying the ECLAM score

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (y)</th>
<th>Sex</th>
<th>PRL* (ng/ml)</th>
<th>ECLAM score</th>
<th>ANA†</th>
<th>ENA*</th>
<th>aCL Ig*</th>
<th>aDNA Ig*</th>
<th>CL-IF*†</th>
<th>Raised ESR*</th>
<th>Decrease of C3/C4</th>
<th>Fever/ fatigue</th>
<th>Skin</th>
<th>Joint</th>
<th>Haematological</th>
<th>Kidney</th>
<th>GNS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>M</td>
<td>6.4</td>
<td>3</td>
<td>2560</td>
<td>Ro/La/Sm</td>
<td>++</td>
<td>129.7</td>
<td>16</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>M</td>
<td>10.1</td>
<td>7</td>
<td>160</td>
<td>Ro/La/Sm</td>
<td>++</td>
<td>80</td>
<td>32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>57</td>
<td>F</td>
<td>10.8</td>
<td>4</td>
<td>1280</td>
<td>Ro/La</td>
<td>+</td>
<td>11.6</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>F</td>
<td>34.3</td>
<td>10</td>
<td>640</td>
<td>La</td>
<td>++</td>
<td>225</td>
<td>128</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>M</td>
<td>20.5</td>
<td>4</td>
<td>1280</td>
<td>Ro/La/Sm</td>
<td>++</td>
<td>34.2</td>
<td>32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>F</td>
<td>21.2</td>
<td>5</td>
<td>320</td>
<td>Ro/La</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>F</td>
<td>24.7</td>
<td>4</td>
<td>1280</td>
<td>Ro/La</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>F</td>
<td>19.8</td>
<td>10</td>
<td>10240</td>
<td>Ro</td>
<td>++</td>
<td>140</td>
<td>128</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>F</td>
<td>39.5</td>
<td>3</td>
<td>640</td>
<td>−</td>
<td>−</td>
<td>16</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>F</td>
<td>9.5</td>
<td>1</td>
<td>320</td>
<td>−</td>
<td>+</td>
<td>21.1</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>F</td>
<td>15.4</td>
<td>6</td>
<td>1280</td>
<td>Ro/La</td>
<td>+</td>
<td>26.3</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*PRL = prolactin; ANA = antinuclear antibodies; ENA = extractable nuclear antigens; aCL = anticardiolipin antibodies, positive (+) > 50 U/ml, + + > 100 U/ml; aDNA = anti-dsDNA ELISA, positive # > 6 AU; CL-IF = anti-dsDNA antibodies determined by Crithidia luciliae immunofluorescence technique; ESR = erythrocyte sedimentation rate; CNS = central nervous system.

†Reciprocal titre, + means positive or present; − means negative or not present.

The patients with SLE were aged 17–57 years (median 30) and controls were aged 19–54 (median 30.5). The disease activity of patients with SLE was analysed according to the European Consensus Lupus Activity Measurement score (ECLAM score), assessing clinical as well as serological findings (table 1).

Venous blood was taken for the detection of serum concentrations of PRL. At the same time, citrate blood (40 ml) was obtained for preparation of the PBMC cultures. Patients who had obvious causes for hyperprolactinaemia—for example, pregnancy, prolactinoma, hypothyroidism, advanced renal insufficiency (creatinine >180 µmol/l), or patients receiving drugs with a side effect of increase in PRL, were excluded from the study. Six patients were receiving treatment with intravenous cyclophosphamide and prednisone, three were receiving methyldiprenisolone bolus treatment, and one patient was receiving azathioprine alone. Another patient did not receive any immunosuppressive treatment at the time of the study. None of these immunosuppressive drugs influence the serum PRL concentration.

MEASUREMENT OF SERUM LEVELS OF PRL

All blood samples were obtained with minimal trauma by venepuncture of the cubital vein between 9.00 am and 12.00 am, with a previous period of fasting and resting. Serum was separated and stored at −20°C until the hormonal assay was performed. Serum PRL was determined by enzyme linked immunosorbent assay (ELISA, Elias-Medizintechnik GmbH, Freiburg, Germany). The cut off serum PRL concentration for the assay was 15 ng/ml for male and 20 ng/ml for female subjects. PRL levels were not determined in theuffy coats of healthy blood donors because of technical reasons.

CELL CULTURES

PBMC were isolated from citrate blood samples by Ficoll-Hypaque separation according to standard protocols (Seromed, Berlin, Germany), including three washing steps with phosphate buffered saline (PBS, pH 7.4; Seromed). The PBMC (1 × 10⁸ cells/ml) were resuspended in medium (RPMI 1640, Seromed) containing 5% fetal calf serum (Seromed), streptomycin/penicillin (10 U/ml, Seromed), and r-PRL (20 and 100 ng/ml) (Genzyme Corporation, Cambridge, USA). Subsequently, the cells were cultured in a CO₂ incubator (5% CO₂) at 37°C for seven days. Thereafter, cell culture supernatants were collected and stored at −20°C until measurement of the IgG concentration.

In further control experiments, lipopolysaccharide (LPS; Sigma, Berlin, Germany) was added to the PBMC cultures of 3/11 patients and of two healthy controls to assess an endotoxin related effect of the PRL on the IgG production of PBMC. The endotoxin concentration of PRL used was 0.02 ng/µg, according to the product information given by the supplier (Genzyme Corporation). To estimate the potential effect of the LPS contained in the r-PRL in more detail, PBMC were also incubated with the endotoxin LPS (2 µg/ml) at a concentration comparable with that expected in a solution of medium containing PRL at 100 ng/ml. In addition, LPS was also added at a concentration of 10 pg/ml.

DETERMINATION OF THE IgG CONCENTRATION IN THE CULTURE SUPERNATANTS

The IgG concentration of the supernatants was determined by a one step enzyme immunoassay, “Human IgG SURALISA” (Serum Diagnostika GmbH, Dolgenbrot, Germany) using a sheep high affinity polyclonal IgG antibody.

Statistical analysis was performed with GraphPad Prism 2.01 for Windows 95. The median IgG concentration of the cell culture supernatants and the median PRL level and disease activity of the patients with SLE were analysed. The Mann-Whitney U test was used to compare the IgG concentrations of the cell culture supernatants of patients with SLE and those of healthy controls. Subsequently, the effect of PRL on the IgG production of SLE PBMC was assessed by comparing the IgG concentrations before and after incubation with PRL using the non-parametric Wilcoxon rank correlation test.

www.annrheumdis.com
Results

Serum PRL concentrations were raised in six patients with SLE, while five had normal levels. Table 1 shows characteristics and serum PRL concentrations of the patients with SLE studied.

SPONTANEOUS IgG PRODUCTION IN PBMC CULTURES

The IgG concentration was significantly higher in cell culture supernatants of PBMC from patients with SLE (median 394 ng/ml, range 132–1734) than in supernatants of PBMC from healthy controls where the IgG concentrations were below the detectable concentration of the assay used (<150 ng/ml) (p<0.0001, Mann-Whitney U test).

INFLUENCE OF PRL ON IgG PRODUCTION

After incubation with PRL at an overall physiological concentration (20 ng/ml), a remarkable increase in the IgG production of SLE PBMC was detected (fig 1). The IgG concentration was significantly higher (median 1139 ng/ml, range 223–2316) than that determined for PBMC without stimulation (p=0.001, Wilcoxon test).

The IgG concentrations of the supernatants of PBMC from patients with SLE after incubation with PRL at a concentration of 100 ng/ml were also significantly higher (median value 1029 ng/ml, range 215–2390) than the basal concentration of IgG (p=0.002, Wilcoxon test). Most notably, the increase in IgG production was significantly lower than that seen after incubation with PRL at the physiological concentration of 20 ng/ml (Wilcoxon test and Bonferroni correction p=0.043).

In contrast, such an increase in IgG production was not detected in the PBMC obtained from healthy controls either after incubation with PRL at the physiological (20 ng/ml) or at the high (100 ng/ml) concentration with values below 150 ng IgG/ml. However, in one of the eight blood donors a mild increase in the IgG concentration after incubation with PRL was detected (spontaneous <150 ng/ml v PRL at 20 ng/ml: 272 ng/ml and v PRL at 100 ng/ml: 264 ng/ml).

INFLUENCE OF LPS ON IgG PRODUCTION

To exclude the possibility that the observed PRL effect on IgG production is related to an endotoxin contamination of the PRL used, we examined the impact of two LPS concentrations (2 and 10 pg/ml) on IgG production in the PBMC of three patients with SLE and two healthy controls. LPS at a concentration of 2 pg/ml did not alter the IgG production of PBMC from patients with SLE (spontaneous 508 ng/ml v LPS at 2 pg/ml: 515 ng/ml, mean values), whereas LPS at a higher concentration (10 pg/ml) caused a mild increase of the IgG production (mean value 645 ng/ml). However, this difference was not statistically significant (Wilcoxon test) and markedly less than that induced by PRL especially at a concentration of 20 ng/ml. Moreover, no increase in the IgG production of PBMC from two healthy subjects was seen after incubation with LPS at either of the concentrations (2 and 10 pg/ml).

CORRELATION OF IgG PRODUCTION IN CELL CULTURE SUPERNATANTS OF PBMC FROM PATIENTS WITH SLE AND THE DISEASE ACTIVITY

Further analysis of the spontaneous production of IgG by PBMC and the disease activity of the patients with SLE did not show a significant correlation (r_s=0.5208, p=0.1003, Spearman’s rank correlation). However, the IgG concentrations after incubation with PRL at a concentration of 20 ng/ml were significantly correlated with the ECLAM score of the patients with SLE (r_s=0.6729, p=0.0277).
Enhancement of IgG production in PBMC

245

From the patients with SLE. The di
tination with PRL, and spontaneously, PBMC
patients with low disease activity. After incuba-
tion of patients with SLE regard-
less of the concentration of these patients, on the IgG
production of their PBMC which shows a sig-
nificant enhancement. This effect was also
shown for PRL at a lower concentration (100
ng/ml), though the impact on IgG production
was less. Remarkably, PRL exerts a greater
effect on IgG production at its overall physi-
ological concentration than at 100 ng/ml. This
supports the theory of the dimerisation model,
which has been suggested not only for the
growth hormone receptor35 but also for the
PRL receptor.36 At high ligand concentrations,
receptor dimerisation is blocked because two
PRL molecules are bound to one receptor,
whereas binding of one molecule/receptor is
seen at low ligand concentration.

Most notably, the correlation of in vitro IgG
production of PBMC from patients with SLE
caused by incubation with PRL and the disease
activity indicates that the susceptibility to PRL
is markedly related to the disease activity.
PBMC of patients with active disease had a
high susceptibility to PRL, with a more marked
increase in IgG production than PBMC from
patients with low disease activity. After incuba-
tion with PRL, and spontaneously, PBMC
from healthy controls did not produce detect-
able amounts of IgG, providing a striking
difference from the patients with SLE. The
current results provide evidence that the influ-
ence of PRL on IgG production depends on
the disease activity, whereas PRL does not
increase the IgG production of PBMC ob-
tained from normal controls. This is consistent
with the observation of Lahat et al, who found
that PRL at a concentration of 0.2–100 ng/ml
affected the immunoglobulin production of
anti-IgM stimulated or interleukin 2 (IL2)
stimulated B cells from healthy subjects but did
not affect unstimulated cells.1 Preactivation of
the cells seems to be required for the PRL
dependent enhancement of IgG production. In
contrast, Gutiérrez et al showed that PRL
enhances the immunoglobulin production of
PBMC from healthy subjects more strikingly
than from PBMC of patients with SLE.2 This
difference might be accounted for by the higher
PRL concentration used, far exceeding the
physiological range of serum PRL levels in
healthy subjects.

The results of our study indicate that the sig-
nificantly increased production of IgG by
PBMC from patients with SLE cannot be
ascribed to PRL alone. Thus the PBMC from
the patients with SLE produced high amounts
of IgG spontaneously that could be further
enhanced by incubation with PRL. In general,
there must be a regulatory defect of B cells in
SLE, or of the interaction of the PBMC from
patients with SLE, causing a more or less
unregulated production of immunoglobulin
and, probably, autoantibodies. Obviously, PRL
can enhance this immunoglobulin production
in vitro, though it is not uniquely responsible
for the induction of immunoglobulin or
autoantibody production at PRL concentra-
tions between 20 and 100 ng/ml. The lack of
enhanced immunoglobulin production by
PBMC from normal donors after incubation
with PRL suggests that either preactivation by
the disease or inherited cellular defects account
for the observed abnormalities of the immuno-
globulin production by PBMC from patients
with SLE. Alternatively, PRL could potentially
permit a more efficient maturation of B cells
into antibody producing plasma cells. Al-
though further proof is needed, the induction
of IL2 receptors by PRL, as previously
shown in rat splenocytes,17 can increase the generation
of antibody producing cells as IL2 is known to
permit the maturation of plasma cells.18

If these in vitro results are transferable to an
in vivo situation, patients with SLE with mild
hyperprolactinaemia, representing up to one
third of all patients with SLE (unpublished
data), provide conditions for an enhanced
immunoglobulin production and autoantibody
generation. Although somewhat speculative,
this might explain the positive therapeutic
effect of bromocriptine in normoprolactinae-
mic patients, as described previously,30 31 and
the frequently observed exacerbation of SLE
during pregnancy.

The impact of PRL on IgG production in
vitro seemed to depend on the disease activity.
Therefore, the data suggest that the extent of
PRL induced enhancement of the (auto)anti-
tbody production in SLE is correlated with the
disease activity in vivo. To what extent PRL
itself is responsible for an increase in disease
activity and its origin in patients with SLE
remains uncertain. However, the results
suggest that low serum PRL levels indicate a low risk of disease exacerbation.

One explanation for the observed difference in the susceptibility of PBMC from patients with SLE and normal controls to PRL in vitro might be that SLE PBMC express a high number of PRL receptors by prior activation in vivo. Alternatively, they may, like CLL-B cells, have the ability to receive additional signals transmitted by high molecular weight PRL by specific mechanisms of receptor function or of intracellular signal transduction. High molecular weight PRL consists of PRL bound to anti-apoptotic proteins, such as bcl-2 or bax, in (auto)antibody producing B cells. It has been the influence of PRL on the apoptosis of mechanism. Another possible explanation is the hypothalamic-pituitary feedback mechanism. In addition, PRL may influence the hypothalamic-pituitary-thyroid axis by inhibiting TSH secretion (7). This study was supported by a grant from the Deutsche Forschungsgemeinschaft (Hi 620/1–1, SFB 421, C4).

of serum PRL in SLE. Alternatively, they may, like CLL-B cells, have the ability to receive additional signals transmitted by high molecular weight PRL by specific mechanisms of receptor function or of intracellular signal transduction. High molecular weight PRL consists of PRL bound to anti-apoptotic proteins, such as bcl-2 or bax, in (auto)antibody producing B cells. It has been the influence of PRL on the apoptosis of mechanism. Another possible explanation is the hypothalamic-pituitary feedback mechanism. In addition, PRL may influence the hypothalamic-pituitary-thyroid axis by inhibiting TSH secretion (7).

Forschungsgemeinschaft (Hi 620/1–1, SFB 421, C4).

This study was supported by a grant from the Deutsche Forschungsgemeinschaft (Hi 620/1–1, SFB 421, C4).


Prolactin enhances the in vitro production of IgG in peripheral blood mononuclear cells from patients with systemic lupus erythematosus but not from healthy controls

A M Jacobi, W Rohde, H-D Volk, T Dörner, G-R Burmester and F Hiepe

Ann Rheum Dis 2001 60: 242-247
doi: 10.1136/ard.60.3.242

Updated information and services can be found at:
http://ard.bmj.com/content/60/3/242

These include:

References
This article cites 43 articles, 12 of which you can access for free at:
http://ard.bmj.com/content/60/3/242#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Immunology (including allergy) (5144)
- Connective tissue disease (4253)
- Systemic lupus erythematosus (571)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/