Adenoviral transgene delivery provides an approach to identifying important molecular processes in inflammation: evidence for heterogeneity in the requirement for NFκB in tumour necrosis factor production

Brian M J Foxwell, Jan Bondeson, Fionula Brennan, Marc Feldmann

Abstract
The success of anti-tumour necrosis factor (TNF) treatment, either using antibodies or soluble receptors, has defined TNF as a major factor of the inflammatory response in rheumatoid arthritis (RA). As a result of this success, much attention has been devoted to understanding the molecular mechanisms by which TNF expression and activity is elicited and controlled. By understanding these pathways, it is hoped that key elements of the molecular pathology associated with RA will be uncovered and, as a result, new targets for therapeutic intervention will be identified. However, studying the cell and molecular biology of model systems for RA, such as primary human macrophages, or tissue from rheumatoid joints may present technical problems. In an attempt to overcome this, we have investigated the use of adenovirus as a means of delivering transgenes by which different intracellular pathways can be modulated and examined. Our data show that adenovirus can be successfully used to efficiently deliver transgenes to primary human macrophages and RA joint tissue. Using a virus encoding IκBα, the natural inhibitor of NFκB, we show that the requirement for the transcription factor is not universal, but is dependent on the nature of the stimulus. Furthermore, while NFκB is of importance for the expression of TNF and other pro-inflammatory cytokines (for example, interleukin 6) and the destructive matrix metalloproteinases, this factor is not required for the expression of anti-inflammatory cytokines interleukin 10 and interleukin 1 receptor antagonist.

The complex nature of the mechanisms controlling TNF expression
As macrophages are the major producers of TNF and other pro-inflammatory mediators in RA and inflammation in general, these cells can be seen as the immediate proximal stage to TNF in the cascade that leads to inflammation (fig 1). Therefore, understanding the cell and molecular biology of these cells in health and disease could help to answer some of the questions presented above. Investigating the molecular signalling mechanisms that control the production of TNF and other pro-inflammatory mediators could lead to the identification of targets for future therapeutic intervention. As many elements of signalling pathways are kinases or other enzymes, this would open up the possibility of screening for, or designing, specific low molecular weight inhibitors that could be orally bioavailable and,
Adenoviral transgene delivery and identification of important molecular processes in inflammation

In addition, TNF is processed post-translationally, being synthesised as a trans-membrane protein that is cleaved from the cell by an ADAM family matrix metalloproteinase, TACE (TNF α converting enzyme). Finally, the biological activity of TNF is controlled by the balance between the concentration of the cytokine and the soluble TNF receptor. However, it must be remembered that the majority of data pertaining to molecular mechanisms controlling TNF production in macrophages, have been derived from studies using LPS as a stimulus and mostly using transformed cell lines of human or murine origin. Because of problems associated with the induction of transgenes (a major approach to signal transduction studies) into primary human monocytes and macrophages, these cell systems have not been so widely explored. Even less studied is RA tissue itself where additional problems, related to the amount of material available and the cellular heterogeneity of the tissue, are present. The potential use of such primary human models are an important consideration, as the stimulus driving TNF production in RA is obscure, the relevance of LPS derived data to the disease is unknown.

Adenovirus provides an efficient means to deliver transgene to macrophages

In an attempt to address some of the problems discussed above, it was felt necessary to develop an efficient means to introduce transgenes into macrophages. Conventional transfection techniques are not very effective in cells of the monocyte-macrophage lineage and even cell lines have proved difficult to transfect with high efficiency. To overcome problems with
infection requires cells to express the coxsackie-adenoviral receptor (CAR)20 and the αvβ3 or αvβ5 integrins as cofactors for viral entry.21–23 Entry of the virus into the cell is rapid and the viral genome is delivered directly to the nucleus (fig 4). However, previous attempts to infect monocytes or macrophages have not been very successful, either requiring high ratios of viral particle per cell, (that is, multiplicity of infection (moi)), or achieving low efficiency of infection.21–22 Using an adenoviral vector encoding β-galactosidase (Advβgal), we have observed that deriving macrophages from elutriated human primary blood monocytes, by treating cells with macrophage colony stimulating factor (M-CSF) for 48–72 hours, greatly improves the efficiency of adenoviral infection.23 This was associated with the upregulation of αvβ5 integrin expression. Under these circumstances, adenovirus could infect about 95% of cells at moi of 50 (fig 5). Macrophages from RA joints were also highly infectible, without any requirement for M-CSF pretreatment; a moi of 40 of Advβgal resulting in >95% infection (fig 5). The high efficiency of adenoviral infection was of great importance as it precludes any need for separating infected from non-infected cells, an important consideration when addressing the mixed culture system of RA joint cells. It was interesting to note that all the cells in the RA synovium were permissive to adenoviral infection, even the RA joint T cells.24 This was a very interesting observation as T cells are normally highly refractory to adenovirus infection.21

Using an IκBα transgene to study the role of NFκB in TNF production in health and disease

The establishment of conditions for effective delivery of transgenes to macrophages made it possible to study signalling pathways in these cells in a more specific way than before. The availability of a natural inhibitor of NFκB, in IκBα, and the previous controversy of the role of this transcription factor in TNF production, provided the ideal system for testing the usefulness of adenoviral vector approaches to the study of intracellular signalling in macrophages. Infection of human primary macrophages with a virus encoding IκBα (AdvIκBα) produced a substantial overexpression of the transgene, compared with uninfected cells or cells infected with an adenovirus containing no insert (Adv0) (fig 6A). Infection with AdvIκBα also resulted in the inhibition of LPS induced NFκB DNA binding activity in the nuclei (fig 6B). Assays of LPS induced TNF production showed 65% inhibition when macrophages were infected with AdvIκBα. In contrast, infection with control virus had no effect on TNF production (fig 7A). NFκB binding sites are also found in the promoters of genes for many other proinflammatory cytokines, for example, IL1 and IL6. The effect of NFκB blockade on the expression of these cytokines, after LPS stimulation, was also assessed. Both IL1 and IL6 were inhibited to a similar extent degree to TNF (fig 7A). Macrophages also produce a number of anti-inflammatory factors, IL1
Adenoviral transgene delivery and identification of important molecular processes in inflammation

The requirement for NFkB is dependent on the nature of the stimulus

A major question that inspired this study was whether there was heterogeneity in the signalling pathways that are used to induce TNF expression. Macrophages were infected with Adv0 or AdvIxBo and activated by a variety of stimuli known to induce TNF expression; the yeast product zymosan, anti-CD45 antibodies, phorbol 12-myristate 13-acetate (PMA) and ultraviolet light. PMA and ultraviolet light are both known to induce NFkB activation and the expression of TNF induced by both stimulus was effectively inhibited by the overexpression of IkBo (fig 7B). In contrast, zymosan, or anti-CD45 antibody induced activation of TNF expression was unaffected (fig 7B). We have been unable to demonstrate the activation of NFkB binding activity by either stimulus.25 26 It would seem, therefore, that there is diversity in the intracellular signalling mechanisms inducing TNF synthesis, and that both NFkB dependent (LPS, PMA, ultraviolet light), and NFkB independent (zymosan, anti-CD45) exist. We have also observed that anti-CD45 antibodies induces the activation of phosphatidylinositol 3’ kinase in macrophages and that inhibitors of this enzyme, wortmannin and LY294002, inhibit TNF production.27 In contrast, we have previously shown that LPS stimulation of TNF expression is stimulated by wortmannin and is unaffected by LY294002.27

Adenoviral transgene delivery allows the investigation of signalling mechanisms in RA joint cell cultures

The data described above demonstrate that the requirement for NFkB in TNF production is dependent on the nature of the stimulus. As, in a disease like RA, the precise nature of the factor(s) (fig 1) inducing cytokine expression is unknown, such questions can be investigated only by direct examination. To do this, RA joint cell cultures were infected with Adv0 or AdvIxBo. As for LPS stimulated macrophages, TNF production was inhibited by about 70% (fig 8A), indicating that NFkB is an important factor for TNF expression in RA. Moreover, IL6 production was also greatly diminished to a degree similar to that seen in LPS activated cells. However, the inhibition of IL1 production was more moderate (33%) compared with that of LPS stimulated macrophages. IL8 production was also only moderately affected (about 33%). Studies on the anti-inflammatory cytokines showed no inhibitory effect of IkBo on IL1RA or IL10 expression and, if anything, a slight enhancement of IL11 expression. In contrast, there was a substantial inhibition of p75 soluble TNF receptor production (fig 8A). These data would indicate that NFkB is an excellent therapeutic target for RA, because blockade of this transcription factor provides the ideal result, inhibiting the expression of key proinflammatory cytokines, while sparing the major anti-inflammatory mechanisms.

The studies were also extended to investigate the expression of MMPs production by the joint cell cultures. These enzymes are generally considered to be the major players in the...
cartilage destruction in RA. The expression of both MMP-1 and MMP-3 (collagenase-1 and stromelysin) were inhibited by >60% on AdvI infection (fig 8B). The expression of MMP-13 was less affected (50%). These data would suggest a role for NFκB in the expression of these MMPs. However, a somewhat surprising finding was the observation that the inhibition of NFκB had no effect on the expression of the tissue inhibitor of metalloproteinase 1 (TIMP-1). As for the cytokines, blockade of NFκB would seem to provide the optimum result: inhibition of all three of these destructive enzymes, but no effect on their major inhibitor.

Summary
These studies have demonstrated the potential of using adenoviral vectors for the study of macrophage function in health and disease. The heterogeneous nature of mechanisms controlling TNF production has been demonstrated, with the nature of the stimulus determining the requirement for NFκB. This result has major implications for future approaches to understanding the mechanisms controlling TNF production in different circumstances. Simple cell models may no longer be sufficient to determine or validate the key signalling pathways in a disease process. Adenoviral vectors can also be used in diseased tissue cultures, like RA synovial cells. In this system, we reproduced the findings that TNF and other proinflammatory cytokines were NFκB dependent, but that IL1RA, IL10 and IL11 were not. Equally importantly, several destructive MMPs were NFκB dependent, but their major endogenous inhibitor was not. These results point out NFκB as an important therapeutic target in RA. Therefore, the development and use of more physiologically relevant systems, and the required tools to investigate them, seem necessary for the future.

Figure 7 Requirement for NFκB during cytokine production in response to LPS and other stimuli. (A) M-CSF macrophages were treated with control virus (Adv0), or AdvIκBα at moi 40. After 48 hours cells were activated with 10 ng/ml LPS for 20 hours, after which culture supernatants were harvested and assayed for cytokine production by ELISA. (B) As above, except that AdvIκBα infected macrophages were activated with 30 µg/ml zymosan, 10 µg/ml anti-CD45 antibodies, 2000 J ultraviolet light, or 10 nM PMA for 20 hours, followed by assaying of culture supernatants for TNF by ELISA. Results are comparisons with cytokine production from uninfected cells. There was no significant effect of Adv0 infection in (B). All results are representative of at least five different donors.

Figure 8 Effect of IκBα transgene on cytokine and MMP expression in RA joint cell cultures. RA joint cells (see fig 5) were infected with AdvIκBα or Adv0 (moi 40). After 48 hours, culture supernatants were harvested and analysed for (A) cytokines and (B) MMPs by ELISA. Data are representative of samples from at least five patients.
identification of the key molecular mechanisms driving inflammation.

Adenoviral transgene delivery provides an approach to identifying important molecular processes in inflammation: evidence for heterogeneity in the requirement for NF-κB in tumour necrosis factor production

Brian M J Foxwell, Jan Bondeson, Fionula Brennan and Marc Feldmann

Ann Rheum Dis 2000 59: i54-i59
doi: 10.1136/ard.59.suppl_1.i54

Updated information and services can be found at:
http://ard.bmj.com/content/59/suppl_1/i54

These include:

References
This article cites 24 articles, 14 of which you can access for free at:
http://ard.bmj.com/content/59/suppl_1/i54#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/