MATTERS ARISING

Epidemiology of whiplash

Space restrictions prohibit a comprehensive refutation of the uneven treatment of the whiplash literature presented by Ferrari and Russell. They fiercely interrogate research that does not support their view, yet uncritically embrace literature favouring their pre-conceptions. Central to their argument is the assertion that there are different rates of chronic whiplash in different countries, and that "anyory related damage cannot account for the wide differences". A valid comparison between the prevalence of any condition in two places would require that it is measured in the same way. Balla’s study comparing Singapore and Australia was little more than anecdotal from interviews of selected Singaporean doctors compared with the data from Australia. Such data may be fatally corrupted by recall, case selection, sampling, and expectation bias. Caution should be observed in comparing insurance claim rates between countries. There is no international consistency in notification of accidents or insurance or compensation procedures. Conclusions drawn from such comparisons are unsustainable and subject to the ecological fallacy. The frailty of using insurance claims as a surrogate for the incidence of injury does not seem to have been considered by Ferrari and Russell. A claim is a behaviour arising from a combination of motivation, enabling circumstances, perceived benefits, costs, social norms, peer and family pressure, and fear of current or future pain and disability—all factors extraneous to the injury itself. The Victorian experience in Australia is particularly pertinent. Fewer claims for whiplash were noted after the introduction of legislation, treating bureaucratic barriers, disincentives, and up-front costs for potential claimants. Some then concluded that whiplash is a behaviour and not an injury.1 A more sober view is that if it is not a claim, fewer people will make one. To extrapolate beyond this is unjustifiable: the apparent change in incidence may simply be due to reporting bias.

The study has been used to argue that chronic symptoms after whiplash do not occur in communities lacking a compensation system.2 However, only 31 patients developed any neck pain as a result of the accident, with none reporting chronic pain. The 95% confidence limits of this estimate range up to 10%. Therefore, the data are consistent with a rate of chronicity of up to 10%. The German and later Ukrainian studies, on which Ferrari and Russell rely, also lack the power to detect a significant chronicity rate.

Magnetic resonance imaging (MRI) is insensitive to abnormalities of the soft tissue components of the cervical zygapophysial joints.3 Consequently, studies of patients with whiplash who have normal MRIs cannot exclude important injury. Furthermore, both ultrasound and bone scan studies have shown potentially painful pathology.4 In considering our studies of chronic zygapophysial pain after whiplash, Ferrari and Russell argue that our patients were unrepresentative. However, most of our patients developed pain within 72 hours of the accident and were passengers or drivers of motor vehicles.6 They were intentionally representative and typical of patients with chronic whiplash. Radanov’s work is critiqued on the basis that they “selectively gathered 117 patients through advertisement”. This would imply that patients answered advertisements they did not see, producing a biased sample. However, the advertisement was in a medical journal, seeking doctors to enrol participants, producing a representative sample. Ferrari and Russell have used these studies in a previous paper, apparently accepting the methodology then.7 These flaws alone raise grounds for concern that the opinions of Ferrari and Russell are not responsible appraisal of the literature and will raise alarm and reinforce prejudice against genuinely afflicted patients.

LES BARNSLEY
Senior Lecturer in Rheumatology,
University of Sydney,
Department of Rheumatology,
Concord Hospital,
Concord NSW 2139,
Australia
Email: les@card.crg.cs.nsw.gov.au

Through their leader, Ferrari and Russell venture to raise alarm about whiplash, repeating the same arguments that they have already raised in two previous editorials and a letter to the editor. But their alarm is overstated and misplaced.

Acute whiplash is not a problem. Even the studies of Radanov et al show that only some 5% of patients have severe symptoms at 12 months.1 Another study, the study of Borchgreivink et al seems to show that most patients can be adequately treated simply by advising them to act as usual. If there is any psychological problem with acute whiplash, it is on the part of doctors and therapists who overmedicalize the problem.4

However, even so, some 10–20% of patients remained symptomatic at six months.2 Two questions arise: why are these patients symptomatic, and what should be done about it? The approach that has been to investigate these patients for a possible source of pain. Under stringent, double-blind, controlled conditions, we have found that we can pinpoint a source of pain in the zygapophysial joints in some 50% of these patients. Moreover, by surgical treatment, we can relieve their pain and their psychological distress and return them to normal life.

These patients may not be typical of acute patients, but they are quite typical of chronic patients. Ferrari and Russell contend that zygapophysial joint pain must be rare. Indeed, it is, for it accounts for only half of 5–10% of the original population; but it accounts for 50% of the chronic population. Elsewhere, Ferrari and Russell invoke the studies of Schraeder et al to prove that chronic whiplash does not occur. However, they cannot argue from the general to the specific. Indeed, even Schraeder et al themselves point out that their results cannot be used to refute an individual claim that their chronic pain resulted from the whiplash. Ferrari and Russell argue that there is no persisting lesion, and that psychological and social factors totally explain the chronic complaints of these patients. So they criticise the work of Radanov, by claiming that it is “fraught with at least 15 significant methodological flaws”. They do not enumerate these flaws but instead cite four references, thereby relying on sophistry or mechanistic failure to mislead readers. If these references are consulted, the last three offer no criticism of Radanov. Only the first, a letter, offers criticism, but cleverly Ferrari and Russell do not inform the reader of Radanov’s rebuttal of these criticisms.

Yet even if we accept that psychosocial factors are important in these patients, Ferrari and Russell do not provide an answer as to what do these patients do differently compared to others. van Akkerveken and Vending,9 do not explain to readers that this was not a peer reviewed publication, that it was only a preliminary study, that it was not controlled, and that the authors themselves were accordingly guarded about overstating their results. No other literature is provided to vindicate cognitive intervention.

Finally, if Ferrari and Russell are so convinced that experimental studies of whiplash are so insignificant, perhaps they might organise some volunteers to undergo a series of AV30 kph and AV60 kph collisions, which are what many of our patients underwent.

NIKOLAI BOGDUK
Newcastle Bone and Joint Institute,
Royal Newcastle Hospital,
Newcastle NSW 2300,
Australia

Making selective use of the literature and incorrect quoting of previous research, the January 1999 "leader" intends to support the view of the whiplash syndrome as malinger- ing. This reply cannot be exhaustive but will address the following:

The Ballas paper lacked a definition of the whiplash syndrome and did not describe the assessment of 300 selected cases seen in a single practice. Moreover, selection bias arising from post hoc selection ("anecdo- tal") control group too. Furthermore, in 20 patients in Singapore with acute whiplash, the injury severity or risk of developing long term symptoms was not specified. Methodo- logical flaws of the Ballas publication are reflected by the fact that this study was not considered relevant by the Quebec Task Force and neither were a number of other references in the "leader". To interpret late whiplash syndrome based on articles such as these is in contradiction to a claim of methodological soundness.

The non-existence of whiplash in the United Kingdom while it has been described for more than 30 years USA is discussed in Miller's 1961 BMJ article, which reports 200 cases examined between 1955 and 1957. This is well within the time frame of the 1953 United Kingdom while it has been described incorrectly quoting of previous research, the advertisement. The truth is that "to obtain a reduction in insurance claims does not reflect the non-existence of whiplash in the medicolegal context—the rapid recovery rate seen in some countries is not being duplicated in others. The studies in Lithuania, Greece, and Germany cannot rule out the possibility of a small number of subjects having chronic pain and disability, but they do show that recovery (as measured by absence of symptoms and return to normal activities, as well as other patient centred outcomes) occurs in 90–95% of subjects in six weeks or less. It is this fact that compels us to question the basis for chronic pain in say, Canada. We find that whiplash in Canada (and reportedly in many other countries) is a major public health and economic burden, with more than 50% of accident victims reporting chronic pain six months after the accident." The patients of Dr Bogduk's study represent merely the tip of a larger iceberg. Thus, new paradigms are neces- sary to understand why some subjects recover within six weeks or fewer and others do not. As no one has suggested that Lithua- nians, Greeks, and Germans have a different anatomy, we need to look for an explanation for this difference in recovery rates. It is certainly possible that a small propor- tion of subjects could have chronic structural damage in countries like Lithuania, as Dr Bogduk suggests, and that current studies with background prevalence of neck pain in the control population of up to 10% are not large enough to distinguish an additional 2–3%. Yet, this additional 2–3% of patients are not the group of patients we are describing. It is the 50% of patients with chronic neck pain at six months that we are concerned with, and the cervical zygapophysial studies are not relevant for this larger group. Indeed, we were not aware that the subjects of Dr Bogduk's studies had chronic neck pain after 6 months. What is the clinical significance of neck pain velocity impacts (a AV of 30–60 kph) as Dr Bogduk indicates. This fact makes it even less likely that their study group is typical of most patients with chronic whiplash, who instead undergo much lower velocity collisions. Clearly, and for good reasons, Dr Bogduk's study patient spectrum is very different from the group we are concerned with. Our disagreement is not substantially with the few per cent that he may see with facet joint problems, but rather with the rest of the ice- berg of chronic pain.

The purpose of our model is to develop discussion on research questions and develop bona fide research efforts to understand what explains different recovery rates, so we can use that understanding in changing both the approach of the therapeutic community and society in response to acute whiplash. Under- standing the behaviour that promotes chronic pain is the first, best step to changing it. We agree with Bogduk, once again, that over- treatment and medicalisation are likely to be part of the problem. Yet, until it is thoroughly demonstrated to, and understood by, the therapeutic community and society at
large, that this is part of the problem, this practice is unlikely to change.

By setting forth this model we can now investigate it. We are making efforts to do this, and we hope that quality researchers such as Drs Barnsley and Bogduk will engage in such efforts as well.

R FERRARI

Department of Rheumatic Diseases,
562 Heritage Medical Research Centre
University of Alberta
Edmonton, Alberta,
Canada T6G 2Z2

Authors’ reply to Dr Radanov

Dr Radanov’s expressed concerns and cry for *auto-da-fé* are based on their perception that our biopsychosocial model is one of malingerin as an explanation for the late whiplash syndrome. As we have explicitly stated, in both our initial article and in a previous review on this topic, we reject a model based on malingering and we consider this to be a rare or uncommon presentation.3 Dr Radanov’s concerns are therefore misguided. That Dr Radanov is unable to appreciate how our biopsychosocial model presents alternatives to the otherwise unhelpful, unidimensional, and dichotomous approaches taken by himself and others is a problem for him, but one which we cannot ameliorate in the space available. We thus refer him to a more comprehensive resource.3

Once again, we reject the view that the chronic pain of whiplash is due to an enigmatic and inexplicable chronic injury, and we simultaneously reject the view that the best explanation (or even a common explanation) for the late whiplash syndrome is malingerin or psychological models that place the pain “all in one’s head”. The biopsychosocial model includes physical sources for pain, and incorporates psychosocial factors to explain both the severity and attribution of the pain, as well as further behaviour enacted upon this substrate of otherwise benign physical sources of pain. Thus we maintain that the most helpful focus of discussion and research should be on identifying how the various elements of the biopsychosocial model explain the variance in epidemiology of the late whiplash syndrome, and why, even within a given culture some accident victims recover quickly and others do not. Dr Radanov’s views may be coloured by the relatively benign nature of the problem he sees in Switzerland. Even with an advertising campaign to recruit subjects, the Swiss outcomes were very much better than those currently being described in North America. We maintain that the Swiss effort at understanding these issues has been a start, but is a mere footstep in a much longer journey of inquisition.

R FERRARI

Department of Rheumatic Diseases,
562 Heritage Medical Research Centre
University of Alberta
Edmonton, Alberta,
Canada T6G 2Z2

ANTHONY S RUSSELL

Department of Rheumatic Diseases,
562 Heritage Medical Research Centre
University of Alberta
Edmonton, Alberta,
Canada T6G 2Z2

Rheumatoid arthritis, poverty, and smoking

Maiden et al raise a number of important and interesting points in their paper.3 Does social disadvantage contribute to the excess mortality in rheumatoid arthritis patients?4

They have observed that mortality in rheumatoid arthritis (RA) correlated with social grouping on the west coast of Scotland. Patients with RA of the lowest socioeconomic classes have an increased mortality when compared with patients of a higher socioeconomic class. Moreover, RA was more prevalent in patients with RA of lower socioeconomic class. We propose that these two important observations can both be explained by cigarette smoking.

The authors commented that cigarette smoking was more prevalent in the patients with RA of lower socioeconomic class in their study. In Britain there is a marked difference in smoking prevalence between social classes. In the 1996 census 41% of lower social class men (social class 4) were current smokers, with only 12% of men in the highest social class (social class 1) currently smoking.5 Cigarette smoking kills 120 000 people a year in Britain.7 Most of these deaths are as a result of cardiovascular disease, respiratory disease, and lung cancer. Maiden et al8 observed that 65% of the deaths in their study occurred as a result of these diseases. Current data show that continued cigarette smoking throughout adult life doubles age-specific mortality rates with an doubling them in late middle age.9 Cigarette smoking is associated with an increased risk of RA in both men and women. The increased mortality seen in patients with RA of low socioeconomic status could be explained in part by cigarette smoking, and that cigarette smoking itself might have contributed to the excess RA seen in the most socially deprived.

Since the poorest in our society appear to have an increased risk of RA, studies designed to identify risk factors for RA may best be focused on those with the highest risk. Cigarette smoking may be especially important to study, because its most powerful effect might be seen in the poorest socioeconomic population with RA. Laudable attempts to study the epidemiology of RA in Britain have been set up. One example is the Norfolk Arthritis Register. However, we would suggest such populations, in which there are a large proportion of higher socioeconomic groups, are unrepresentative of the large industrial cities in Britain. In 239 patients with RA in the Mersey region under hospital follow up, the social class of our patients was identified using the Office of National Statistics classification of occupations.9 The patients with RA in Merseyside were of significantly lower social class than the patients with inflammatory polyarthritides studied in Norfolk.10 Table 1 summarises these findings. If the findings reported by Maiden et al are supported by further studies, there would seem to be significant differences in incidence, severity, and mortality in RA according to socioeconomic profiles. This would mean that increased resources should be allocated to regions of greatest need and not, as at present, to areas where socioeconomic class is highest, such as the south of England.

Table 1

<table>
<thead>
<tr>
<th>Social class</th>
<th>Social class</th>
<th>Social class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2 No (%)</td>
<td>3N–3M No (%)</td>
<td>4–5 No (%)</td>
</tr>
</tbody>
</table>

*Social class based on the Office of National Statistics classification of occupations.7

*p<0.0001; **p<0.05.

*Social class based on the Office of National Statistics classification of occupations.7

‡N = non-manual; M = manual.
Authors’ reply

We welcome the letter entitled “Rheumatoid arthritis, poverty, and smoking” in response to our article “Does social disadvantage contribute to the excess mortality in rheumatoid arthritis patients?” The importance of looking as a contributor to the influence of socioeconomic deprivation on mortality is rightly emphasised. However, as Black has pointed out eloquently, smoking alone does not account for the excess mortality seen among lower socioeconomic groups.

We observed a higher mortality rate among patients with rheumatoid arthritis (RA) living in deprived areas relative to those living in affluent areas. Our methodology did not determine the social class of individual patients according to the Office of National Statistics classification of occupations. Nevertheless, whether measured by income, occupation, educational level, social class, or ecological variables such as the Carstairs score, socioeconomic deprivation has been shown to influence health. In addition, we observed that there were more patients with RA living in deprived areas of the general population in Scotland. Although this may result from a higher prevalence of RA among the lower socioeconomic classes, this conclusion cannot be drawn overly from our study. Patients living in deprived areas of inception cohorts in areas of affluence and deprivation would prove valuable in determining the epidemiology of RA.

In our cohort 40% of the most affluent group (Carstairs 1 and 2), 45% of Carstairs 4, 5, and 6, and 65% of the most deprived group (Carstairs 6 and 7) were current smokers; figures much higher than the 1996 census figures of 12% and 41% for social classes 1 and C and 5 respectively. This difference may reflect the fact that our patients were recruited a decade earlier (1984–85), but there are also social/cultural differences between Scotland and the United Kingdom as a whole. The prevalence of smoking in Scotland from the Scottish Health Survey 1995 was 23% in social classes 1 and 2 and 49% in social classes 4 and 5.

Although differences in mortality rates according to smoking with RA according to socioeconomic deprivation can be explained, in part, by differences in the prevalence of smoking, the observed influence of deprivation on mortality in RA is less easily accounted for by smoking. Functional ability is an important outcome measure in RA and is a predictor of mortality in this disease.

The Scottish Health Survey 1995 showed that there were differences according to social class in other important determinants of health, including diet, alcohol consumption, obesity, hypertension, lung function, fibromyalgia, general health perception, and physical activity levels. Further research is required to establish the relative importance of these and other factors in determining the influence of socioeconomic deprivation on outcome and mortality in RA and other chronic diseases in general. The factors which can be modified most effectively to reduce the inequalities in health outcome also require investigation.

If our findings are supported by further studies, the socioeconomic status of populations should influence resource allocation. In addition, these important factors should assist rheumatologists when deciding which patients with RA should receive more intensive, multidisciplinary intervention.

Diagnostic evaluation of classification criteria for RA and reactive arthritis

We read with interest the recent article by Hülsemann and Zeidler in which the 1987 American College of Rheumatology (ACR) classification criteria for rheumatoid arthritis (RA) were evaluated for their ability to identify patients with a clinical diagnosis of RA among 217 patients referred to an early arthritis clinic. The authors concluded that the 1987 ACR criteria can be used to make a diagnosis of RA in this setting.

In this study, the “gold standard” against which the criteria were applied was an “expert diagnosis” made by one of the authors when the patient was first seen (within one year of symptom onset). However, the main difficulty facing clinicians for patients with early disease is that patients who ultimately develop RA appear clinically similar to those who have self-limiting disease or other forms of inflammatory arthritis. It is therefore too early to make an accurate diagnosis at this stage. More importantly, RA is a heterogeneous disease with a prognosis which varies from complete symptom remission to severe disability. Therefore simply categorising patients into those who do and do not have “RA” is not necessarily important when considering which patients require early treatment. Although the authors made a clinical diagnosis without using the classification criteria, the diagnoses were informed by their knowledge of the individual components of the criteria. Therefore the high sensitivity (90%) they reported means that most of the patients with a clinical diagnosis of RA will have had seropositive, erosive, polyarticular disease with hand involvement. Whereas we have no problem in recognising these patients as having RA, it represents only one end of the spectrum. The proportion of patients with “undiagnosticated arthritis” in this study is high (54%), though this has been reported in other series. It is likely that many of these patients have atypical RA which may still require treatment with disease modifying antirheumatic drugs. Further, in early disease, patients often do not satisfy some of the criteria (nodules, erosions) which are features of established RA. We therefore think it is misleading to imply that patients who do not satisfy the 1987 ACR criteria (a) do not have RA; and (b) do not require early, aggressive treatment.

We recently evaluated the performance of the 1987 ACR criteria in an unselected cohort of 486 patients newly presenting with inflammatory polyarthritis to the Norfolk Arthritis Register. We considered the practical question of whether the criteria could identify which patients would have a poor prognosis after three years as assessed by (a) persistent synovitis; (b) functional disability and (c) radiological erosions. Although we applied the criteria in a number of different ways, we found they had a low ability to discriminate between patients who developed persistent, disabling, and erosive disease and those who did not. For example, applying the criteria in the traditional “list” format, the positive predictive value for erosions was only 45% and the negative predictive value 67%. In practical terms, this means that erosions alone would not identify patients at significant risk of poor outcome. Patients who develop erosions on radiographs in early disease are likely to be encountered using incomplete data ascertained from case note review. It is therefore more appropriate in a group with early synovitis to assess the criteria applied longitudinally at follow up rather than simply at baseline.

In the study by Hülsemann and Zeidler we were given no information about how or when the criteria were applied apart from that they were applied “retrospectively”. Other difficulties are likely to be encountered using incomplete data ascertained from case note review. It is therefore more appropriate in a group with early synovitis to assess the criteria applied longitudinally at follow up rather than simply at baseline.

We agree with Hülsemann and Zeidler that there is a need to “differentiate RA as early as possible from the often benign and self-limited forms of undifferentiated arthritis, as there is a need for early treatment of RA”. However, we strongly disagree with the use of the 1987 ACR criteria. Until we understand more about the pathogenesis of RA, clinicians will have to rely on clinical judgment and the presence of poor prognostic factors to make decisions about whether to treat aggressively patients presenting with early disease.

BEVERLEY HARRISON
ALAN SILMAN
DEBORAH SYMONDS
ARC Epidemiology Unit, Stopford Building, Oxford Rd, Manchester M13 9PT, UK

Authors’ reply

We agree with Harrison et al that the main difficulty for a rheumatologist in early arthritis is to distinguish progressive rheumatoid arthritis from self limiting disease and other forms of arthritis that do not show a progressive course. Nevertheless, there is also a need in clinical practice for the primary care doctors to perform, as easily as possible, a nosological differentiation between RA and the whole spectrum of other arthritides and spondarthritides.

We have described the incidence of undifferentiated arthritis to be as high as 54%1. When patients were seen in this early onset arthritis outpatient clinic between 1984 and 1986, the 1985 American Rheumatism Association (ARA) criteria had not been revised. Expert diagnoses were made with knowledge of the 1958 ARA criteria for the diagnosis of RA but were not the basis of diagnoses. Trained as clinicians, rheumatologists never used the ACR criteria for diagnosis making. Only in retrospect, were the 1987 revised ACR criteria applied. These criteria are for classification of RA. The intention was to investigate the performance of these criteria in early synovitis with a high proportion of undifferentiated and reactive arthritides. Since the performance had good with a high sensitivity (90%) and a high specificity (90%), we suggested, that these criteria could be used not only as classification criteria but also as criteria for the diagnosis of RA.

Criteria should be applied longitudinally at follow up, rather than simply at baseline. We applied criteria cross sectionally on the day of their first visit. We cannot present follow up data on the whole group, but of a subgroup of 28 patients with undifferentiated arthritis.1 Only two of these patients developed rheumatoid factor negative RA, 15 patients showed complete remission, two showed partial remission and the other 10 patients had unchanged progressive unclassified arthritis, and one patient had developed ankylosing spondylitis.

In accordance with our experience, van der Horst-Bruinse et al have shown, in a special early arthritis clinic that early diagnosis of RA is possible and reliable.2 Compared with routine patient care, of 74 patients with definite RA according to the 1987 ACR criteria, diagnosis at two weeks after the first visit, 66 still had definite RA after one year, and in only one patient were the diagnosis changed to systemic lupus erythematosus (one), undifferentiated arthritis (one), gout (one), and probable RA (one). Two patients had died and two were lost to follow up. This shows, that the validity is high for the 1987 ACR criteria for differentiating between RA and non-RA arthritides in an early synovitis clinic.

We do not imply that patients who do not fulfil the 1987 ARA criteria do not have RA. If they do not fulfil the criteria at this early stage, we classify them as undifferentiated arthritis. This is a working diagnosis, which can be changed to a definite diagnosis during follow up, but is only rarely necessary, as our experience of Van der Horst-Bruinse shows. The 1987 ACR criteria are not valid for prognostic purposes as Harrison et al stated.3 Other prognostic factors exist and can easily be applied to patients with RA.4 But the ACR criteria for RA are still important means of helping family doctors and general practitioners not trained in rheumatology to do a diagnosis of RA and to differentiate between RA and other forms of arthritides as soon as possible in the course of the disease. Thus by early referral to a rheumatologist an adequate treatment can be started as soon as possible. Even rheumatologists, who are familiar with the criteria used in all controlled trials to establish treatment guidelines, are, in our view, well supported in every day practice by applying the 1987 ACR criteria to differentiate RA from other forms of arthritis, enabling early diagnosis and treatment decisions.

JAN L. HULESMA\nH ZEIDLER
Division of Rheumatology, Department of Internal Medicine, School of Medicine, Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany

Efficacy of intra-articular primatised anti-CD4 in resistant rheumatoid knees

An interesting paper was published recently in the *Annals of the Rheumatic Diseases* examining the effect of intra-articular administration of primatised anti-CD4 antibody in the knee joints of patients with rheumatoid arthritis and persistent synovitis, unresponsive to treatment. The paper correctly detailed the disappointing results obtained in clinical trials with parenteral treatment with anti-CD4 antibodies, particularly in view of the supposed pivotal role of CD4 positive T cells in the chronic synovial inflammatory response.

The paper showed an apparent improvement in the knee synovitis in patients treated with a low (three patients) and high (seven patients) dose of intra-articular anti-CD4 antibody and no response in two patients treated with placebo, using a combination of magnetic resonance imaging, arthroscopic scoring of the synovitis, and immunohistochemical labelling of the synovial biopsy specimens.

An obvious omission from this paper was any doctor or patient derived clinical parameters to allow the reader to assess the benefit, if any, of this treatment for the patient. The only indication of the clinical efficacy of this treatment in the paper was the statement that two of the patients receiving low dose and all seven receiving high dose had required no further local injection treatment at follow up after 18 months. It is curious that no clinical parameters were measured in this study, with a complete reliance on imaging and laboratory procedures to measure outcome, which leads me to speculate that there might have been no discernible clinical difference between the treatment groups, as assessed by the patient or doctor.

Also, there was a marked disparity in baseline C reactive protein (CRP) levels between the three treatment groups, with the placebo treatment group having a far higher level (and presumably more active disease). There was no evidence that this treatment had any effect on systemic parameters of disease activity, with the CRP actually increasing in the three patients receiving 0.4 mg anti-CD4 antibody into the knee joint.

Turning to the outcome measures used in this study, the changes in the MRI measures were small (ranging from a 15% deterioration to a 10% improvement in different measures in the groups receiving active treatment), which is unimpressive for a treatment which targets a cell with a “pivotal” role in synovitis in rheumatoid arthritis. The results in all three groups with treatment illustrated in fig 3 (see ref 1) are also unimpressive and it is difficult to see a great difference between the MRI images obtained before and after treatment.

Finally, the reader should be aware that immunohistochemical labelling of the synovial membrane with anti-CD4 antibodies will label CD4 positive T cells and macrophages (which also express CD4), so the authors cannot evaluate whether the decrease in CD4 staining in the synovial biopsy specimens as a result of treatment is due to a decrease in T cells, in macrophages, or both, unless dual immunohistochemical labelling for CD4 and a cell lineage specific antibody is performed. A close inspection of fig 4 (see ref 1) suggests that the major change in CD4 labelling is in the lining region of the membrane, indicating an effect on macrophages rather than CD4 positive T cells.

In conclusion, this interesting paper has, like the clinical studies on anti-CD4 antibody treatment for rheumatoid arthritis, promised much to the reader but has ultimately been disappointing.

Considerable doubt about the central role of the CD4 positive T cell in sustaining the chronic synovial inflammation in rheumatoid arthritis remains and this study has not altered this conclusion.

M. C. SMITH
Division of Medicine, Repatriation General Hospital, Dept Park, South Australia 5041, Australia

 Authors’ reply

We thank Professor Smith for his interesting comments. Professor Smith refers to an “obvious omission...any doctor or patient derived clinical parameters”. Clearly, we had measured the knee circumference of the target knee in this situation and we were using knee swelling as a clinical parameter; in table 1 of our paper it can be seen that there was no significant change in the knee circumference in any of the treatment or placebo groups during the study. Although we did not show the data in the results section, we stated that there was no statistically significant improvement in the doctor’s assessment of knee synovitis over the study period. Therefore, we do not suggest there was a marked clinical response to treatment in these patients. We agree that there was a marked disparity in the baseline CRP levels within the three groups, but this was a result of randomisation and therefore something over which we had no control.

As regards the changes in MRI measurements, and the quantitative maps showing the reduction in gadolinium uptake, we believe that the trend towards the dose response across the three groups was clearly the most important interpretation of these results. We do not agree, however, with the reader’s interpretation that a possible range of change of 25% is small, especially as the patients had longstanding, resistant disease. The mean duration of disease for these patients was about 12 years and they had undergone multiple treatments with disease-modifying antirheumatic drugs.

Professor Smith’s final point about anti-CRP antibodies, which label macrophages as well as T cells, we clearly discussed in the third paragraph of the discussion—“There are a number of possible explanations for this apparent reduction in the number of CD4+ cells, which may represent a reduction in T cells or macrophages...”

In summary, we believe that this was an important study, firstly, as a proof of concept approach for therapeutic studies in rheumatoid arthritis, and secondly, as a unique combination of imaging techniques, using arthroscopy, magnetic resonance imaging, and histology, enabling a direct comparison of these techniques.

P EMERY
School of Medicine,
Rheumatology and Rehabilitation Research Unit,
University of Leeds,
36 Clarendon Road,
Leeds LS2 9NZ, UK
Email: p.emery@leeds.ac.uk

LETTERS TO THE EDITOR

CD36 and CD14 immunoreactivity of Reiter cells in inflammatory synovial fluids

Reiter cells are macrophages containing ingested polymorph nuclei that are commonly found in most inflammatory synovial fluids. Available data indicate that CD36 and CD14 on human monocyte derived macrophages are adhesion molecules involved in several biological processes. Of interest, their role in the process of adhesion and phagocytosis of apoptotic cells has been recently demonstrated.

Jones and colleagues demonstrated reduced Reiter cells in the synovial fluids from patients with rheumatoid arthritis. This observation is consistent with the hypothesis that Reiter cells play a regulatory part in preventing autolysis of polymorphonuclear neutrophils (PMN) and thus local tissue damage.

The purpose of this study was to evaluate by histochemical technique whether Reiter cells express CD36 and CD14 in inflammatory synovial fluids.

We analysed the synovial fluids obtained from the knee joints of 10 patients suffering from inflammatory joint diseases of recent onset (<6 weeks). Three patients had seropositive active rheumatoid arthritis, four patients had seronegative spondyloarthropathies (two reactive arthritis, one psoriatic arthritis, one enteropathic arthritis) and three patients had crystal induced arthritis (two cases of acute gout and one case of acute pseudogout). Synovial fluids were processed within one hour of aspiration. Two slides were stained with May-Grünewald-Giemsa (MGG) reagent. Reiter cells were counted on the basis of the first 50 cells encountered on MGG stained slides. In addition, two cyt centrifuge monolayer preparations were processed for immunohistochemistry using the monoclonal antibody to human-CD36 antibody (Boehringer Mannheim-Germany) diluted to 3.5 mg/ml and the monoclonal antihuman monocyte CD14 antibody (DAKO-Denmark) diluted 1:10 in TRIS-HEPES buffer. In brief, specimens were air dried, fixed with acetone and then stored at ~70°C until processing. The specimens were incubated for 60 minutes at room temperature with the primary antibody. For the conjugation of peroxidase an En Vision*TM Kit (Dako) was used. The monolayers were then incubated for five minutes with a prelabeled diamino-benzidine solution (DAKO) and countercoloured with Mayer’s haematoxylin. All incubation steps were preceded by washes in 0.1 M PBS (five minutes × three). The slides were examined at 400× magnification.

Omission of primary antiserum, use of normal rabbit serum, or one of subsequent steps in the staining method was included as controls for specificity.

Macrophages as well as Reiter cells could be observed on MGG stained slides. Reiter cells were more abundant in synovial fluids from patients with seronegative spondyloarthritides and crystal induced arthritis compared with synovial fluids from RA (table 1).

On immunohistochemistry preparations, numerous mononuclear cells showed a CD36 positive reaction, while all the Reiter cells observed displayed a positivity for the thrombospondin receptor. CD14+ mononuclear cells outnumbered CD36+ cells; similarly, all the Reiter cells observed were immunoreactive for the anti-CD14 antibody (fig 1A, 1B).

Our findings show that Reiter cells do express both CD36 and CD14 adhesion molecules.

CD36 expression on Reiter cells seems to support the notion of the involvement of this receptor in the clearance of apoptotic PMN during synovial inflammation. In vitro data have shown that thrombospondin receptor and CD14 are some of the important adhesion molecules involved in cell clearance.

The expression of the thrombospondin receptor turns an amput phagocyte into a professional one. It has been hypothesised that dysregulation of this receptor and the ensuing impairment of inflammatory cell elimination could play a part in inducing chronicity as well as tissue damage and scarring. Recently, CD14 has been demonstrated to mediate recognition and phagocytosis of apoptotic cells. This interaction depends on a region of CD14 that is supposed to be identical to a region that binds bacterial lipopolysaccharide, triggering the release of proinflammatory cytokines from macrophages. On the other hand, the interaction with self components acts as an initial step leading to apoptotic cell elimination. A major role for CD36 in the uptake of apoptotic neutrophils has been recently hypothesised, but it seems likely that micro-environmental modifications could promote the switch from a CD36 dependent pathway to pathways using other adhesion molecules such as CD14. The removal of inflammatory PMN is mediated by several surface molecules and modulated by microenvironmental modifications; it seems to be a crucial, although only partially understood event for the control and resolution of inflammation. Our results suggest that CD14 and CD36 could be involved in the adhesion of the macrophage to the apoptotic cell, the first step of

<table>
<thead>
<tr>
<th>Sample</th>
<th>Reiter cells (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA (n=3)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>SaA (n=4)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>CIA (n=3)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

RA: rheumatoid arthritis, Sa: seronegative spondyloarthritides, CIA: crystal induced arthritis.

Figure 1: (A) CD36+ mononuclear phagocytes (arrowhead) and Reiter cell (arrow) in cytospin preparation of an inflammatory synovial effusion (enteroarthritis). (B) CD14+ Reiter cell observed in a knee synovial fluid sample from a patient with monoarticular acute gout.
Non-periodic leg pain in patients with familial Mediterranean fever

Familial Mediterranean fever (FMF) is characterised by recurrent bouts of fever and peritonitis, pleuritis, arthritis or erysipelas-like skin disease. Between the episodes, FMF patients are free of symptoms and appear healthy. However, interestingly we observe leg complaints after prolonged standing or sitting, or both, in FMF patients, who usually experience these painful manifestations during evening or after long distance bus trips.

Thus we conducted a questionnaire study on 40 FMF patients (age, mean (SD): 16.2 (7.7) years; F: M; 2: 38) and 180 healthy male subjects (age, 21.3 (0.2) years) to ascertain the frequency of these complaints, and some of FMF patients were also included in a test to provoke these symptoms. Table 1 shows the questionnaire. Positive cases were also questioned for the presence of swelling or redness during these painful periods, and whether these complaints followed by an episode.

Although 14 of the 18 healthy subjects responded positively to the first question (question A), none of them were considered to be positive after further questions (question B). All FMF patients reported foot or leg pain after prolonged standing periods (first part of question A). They described that, at the onset, the pain was merely confined to the mid-foot, however other sites (the ankles, the calves, the knees or even the thighs) were involved in an additive manner as the intensity of pain increased unless resting ensued. Thirty six FMF patients have experienced foot pain (with or without subcutaneous swelling) during or after long distance bus travelling and they also described an area of redness, which typically located on the swollen region on those occasions. Thirty five patients defined a period of fatigue accompanied a low grade fever subsequent to the episodes with severe lower extremity symptoms.

In provocative test, 30 volunteer male FMF patients (age, 21.2 (1.8) without proteinuria and 30 volunteer male healthy subjects (age, 21.1 (0.8)) were kept in an upright posture (standing, walking or dependent sitting) for six hours. At the beginning, all participants were symptom free and none of them had any other disorder that may cause foot pain. Thirteen FMF patients were receiving colchicine treatment. Bilateral ankle and the mid-foot circumferences were measured from the marked points at the onset and the termination of the test. The mean change in circumference per measurement site (mean (SD)) resulted in 0.27 (7.7) mm and 1.5 (1.5) mm in the patient and the control group, respectively. Although the comparison was statistically significant (p=0.014; Mann-Whitney U), we think that our method was not reliable to detect those small changes precisely.

At the end of the provocative test, none of the healthy controls had lower extremity pain or tenderness. Apart for one patient, all FMF patients had intense foot or calf pain, which interfered with walking. Tenderness was so profound that it could be elicited even by a gentle touch. Widespread tenderness was detected in 12, whereas localised tenderness was detected in 17 of the patients. Although swelling was not noticed in anyone, focal erythematous areas (not erysipelas) were seen in five patients. After five hours of resting, palpation showed that tenderness was sustained (14 widespread and 16 localised). A localised pain and tenderness was also developed in the symptom free patient. Colchicine use did not change the results of provocative test (p=0.240; Fisher’s test).

Although leg pain induced by exercise or prolonged standing has already been discussed in FMF patients, we are unaware of any report about leg pain and swelling episodes after prolonged sitting in these patients. Increased hydrostatic pressure in the lower extremities may be the main factor responsible for those symptoms experienced during bus trips.

It was suggested that FMF is related to catecholamine metabolism as metaraminol infusion may provoke an acute episode, and episodes may be prevented by prazosin hydrochloride, as reported recently. Leucocytes may need adequate perfusion (driving) pressure to pass through capillaries in microcirculation. These findings raise the possibility that catecholamines may increase the hydrostatic pressure of capillary bed, which may be an inciting factor for episodes.

Our findings show that an inflammatory response evolving lower extremities occurs after prolonged standing and sitting periods in FMF patients. We think that genetically low level of inhibitory activity (that is, mutated pyrin) may not be able to compensate the inflammatory reaction that is probably initiated in a stressful microenvironment caused by not only microtrauma, but also increased hydrostatic pressure.

I am greatly indebted to Professor Hasan Yazici for constructive criticism and help in preparation.

A DINC
Division of Rheumatology, Department of Internal Medicine, Gilihane School of Medicine, Ankara, Turkey

Correspondence to: Dr Dinç, GATA Romatoloji Bilim Dalı, Etilik, 06010 Ankara, Turkey

CORRECTION

We regret that the references in this article are incorrectly numbered. Owing to the splitting of reference 7, references numbered from 9 onwards in the text are listed as 10 onwards in the reference list.
The HLA-B*2709 subtype in a patient with undifferentiated spondarthropathy

In 1998, in this journal, we reported the cases of two B27 positive patients with undifferentiated spondyloarthropathy (SpA) and shown dactylitis also affecting the synovial sheaths in the palm of the hand.1 Neither patient had axial disease but showed peripheral manifestations of spondyloarthropathy (SpA), such as peripheral arthritis, peripheral enthesitis, and dactylitis.

Recently, one of our two patients (No 2) was subtyped and typed to B*2709 positive. As far as we know this subtype has never been found in patients with SpA.

DNA typing of HLA class I alleles was performed using a DNA sample prepared from peripheral blood lymphocytes by the salting out procedure.7 The class I ABC SSP UNITRAY low resolution kit (Pel-Freez) was used. The primer sets amplify all alleles described by the International Nomenclature Committee of WHO in 1995 and in 1997.8 Polymerase chain reaction amplification with sequence-specific primers (PCR-SSP) was used. A control primer pair was present to verify the integrity of the PCR reaction. Multiplex typing of B27 variants was carried out by a PCR-SSP technique with a DYNAL HLA-B27 kit (DYNAL AS, Oslo, Norway), which identifies all the phenotypically different HLA-B27 alleles, B*2701–11, recognised by the HLA Nomenclature Committee in 1973.9 The typing results for our patients were: HLA-A*0101-02, *3001-02; HLA-B*0801, *2709; HLA-C*0102-03, *0701-07.

To confirm these results HLA-B locus sequence based typing was performed. A unique DNA amplification, encompassing exon 1 to intron 3, and four fluorescent sequencing reactions, covering exon 2 and 3, were needed.10 Two intronic amplifications generated a 1 kb length product useful for direct sequencing. For complete subtyping of the allelic variants PCR-SSP was used. Cycle sequencing reactions allowed the incorporation of fluorescently labelled dideoxy terminators for detection on a DNA automated sequencer (ABI PRISM 377, Perkin Elmer). Data processing and allele assignment were performed automatically with specific analysis software that compares the sequencing results against a sequence library and provides individual allele assignment for each sequence. The HLA-B class 1 high resolution typing of our sample was HLA-B*0801:2709 in agreement with the low resolution typing performed by PCR-SSP.

SpA has a strong association with the HLA-B27 molecule. Studies in humans and transgenic rodents suggest a direct involvement of HLA-B27 in the pathogenesis of the disease. Thirteen subtypes of HLA-B27 (B*01-13) have been described, differing from each other by one or more amino acid changes, mainly in the peptides region. Of these B*2701, 02, 03, 04, 05, 07, 08, and 10 are associated with ankylosing spondylitis (AS). B*2711–13 are rare, which has precluded assessing their putative association with AS. B*2706 is not associated with AS in South East Asia. However some B*2706 positive patients with AS have been reported in China.11 It has been suggested that the B*2706 might protect against SpA. Recently, a study on families in which both B*2706 and B*2709 occurred has suggested that B*2706, although not associated with SpA, does not protect against SpA.

B*2709 has been found in Sardinia and in continental Italy, where the frequency of HLA-B27 in the general population is around 2%. B*2709 accounts for 25% of HLA-B27 subtypes in Sardinia and 3% in continental Italy.12 D’Amato and coworkers have tested 35 Sardinian patients with AS and 40 Sardinian B27 positive healthy subjects by genomic typing.13 None of the patients with AS were found to be B*2709 positive, in contrast with 25% among the healthy controls. The authors suggested that B*2709 is not

associated with AS, B^*2709 differs from B^*2705 by a single substitution (His \rightarrow Asp) at position 116, which is located in the F pocket of the peptide-binding site. In the opinion of D’Amato and his colleagues the substitution at position 116 might exclude the acceptance of arthrogenic peptide from the B^*2705.

Our patient was born in the south of Italy, she is B27 positive, and has uSpA and not be limited to AS. These should include the full spectrum of AS association found in Sardinian patients with AS\(^\text{9}\) should be confirmed in other studies. These should include the full spectrum of SpA and not be limited to AS.

Y chromosome microchimerism in rheumatic autoimmune disease

It is well known that some features of chronic graft-versus-host disease (GVHD) resemble those of other rheumatic autoimmune diseases, such as systemic sclerosis (SSc), Sjögren’s syndrome (SS), and primary biliary cirrhosis (PBC). Furthermore, the development of systemic lupus erythematous (SLE)-like diseases has been seen in murine models of GVHD.\(^1\) The pathogenesis of rheumatic autoimmune diseases is still unknown. One possibility that has been suggested is that these diseases are associated with pregnancy because of their strong female predilection and, especially in SSc, a peak incidence after parturition. In 1996 Bianchi \textit{et al} reported that fetal cells could survive in the maternal circulation for up to 27 years after parturition, a phenomenon termed fetal microchimerism.\(^2\) These observations led the hypothesis that persistent fetal cells in the maternal circulation could mediate a graft-versus-host reaction, resulting in autoimmune disease.

Nelson \textit{et al} have previously carried out a quantitative assay for male DNA in women with SSc and normal women who had delivered at least one son.\(^3\) They indicated that the mean number of male cell DNA equivalents among controls was 0.38 cells/16 ml whole blood and 11.1 among patients with SSc. In addition, Artlett \textit{et al} have shown Y chromosome-specific sequences in the DNA extracted from peripheral blood in 32 of 69 women with SSc (46%) as compared with 1 of 25 normal women (4%).\(^3\) They also reported that those allo-cells were T lymphocytes and infiltrated lesion skin. These findings support the hypothesis that fetal microchimerism may contribute to the pathogenesis of SSc. However, this is still controversial because Murata \textit{et al} have recently reported that there is no significant difference in the presence of fetal DNA in peripheral blood between Japanese patients with SSc and healthy women with non-quantitative assay.\(^4\) Here we report further studies of fetal microchimerism in SSc, SLE, and SS.

We assayed for a specific Y chromosome sequence in the DNA extracted from peripheral blood by a nested polymerase chain reaction (PCR) in 20 patients with SSc, 21 patients with SLE, 18 patients with SS, and 41 healthy volunteers. All patients and healthy volunteers were Asian-Japanese women with SSc and healthy women had delivered at least one son. The nested PCR was done using the primers Y1–1, Y1–2, Y1–3, and Y1–4, which are specific for a part of the Y chromosome sequence, DY21, as described previously.\(^5\) The identity of the detected PCR product was confirmed by nucleotide sequencing. The results from healthy volunteers and test groups were compared by Fisher’s exact probability test. Y chromosome-specific DNA was detected in 10 of the 20 patients with SSc (50%), eight of 41 healthy volunteers (20%, \(p=0.017\)), and six of 18 patients with SS (33%). No Y chromosome-specific DNA was detected in any of the patients with SLE (table 1). The DY21 was most commonly found in Barnett’s type III (four of five). The DY21 positive patients with SSc also had a variety of antibodies including anti-RNP, antimitochondrial, and anti-smooth muscle antibodies that may reflect polyclonal activation of immune cells. Anticentromere antibodies were detected more commonly in the DY21 negative group (eight of 10). All three patients with SSc who had PBC were DY21 positive and had anticientromere antibodies (table 2).

Our data confirm that male DNA is found more commonly in women with SSc than in normal women. Interestingly, DY21 was not detected in patients with SLE and there was no significant difference between patients with SS and healthy volunteers. These data suggest that fetal microchimerism may be a phenomenon which is strongly associated with the pathogenicity of SSc and not with the related autoimmune diseases, SLE and SS.

Table 1 Patients’ characteristics

<table>
<thead>
<tr>
<th>Patients (n)</th>
<th>SSc</th>
<th>SLE</th>
<th>SS</th>
<th>Healthy controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean (range))</td>
<td>56.1 (44-74)</td>
<td>50.2 (34-82)</td>
<td>54.8 (27-74)</td>
<td>53.2 (39-59)</td>
</tr>
<tr>
<td>Duration of illness (years, mean (range))</td>
<td>10.2 (1-26)</td>
<td>11.9 (1-24)</td>
<td>8.7 (1-19)</td>
<td></td>
</tr>
<tr>
<td>DY21 positive (No (%))</td>
<td>10/70 (14.3)</td>
<td>0/0 (0)</td>
<td>6/33 (18.2)</td>
<td>8/20 (40.0)</td>
</tr>
</tbody>
</table>

\(|p=0.017|, \text{systemic sclerosis (SSc) vs} \text{ healthy volunteers.}|

\(|p=0.028|, \text{healthy volunteers and systemic lupus erythematosus (SLE).} |

\(|SS|= \text{Sjögren’s syndrome.} |

Table 2 Comparison of clinical findings of DY21 positive and negative systemic sclerosis groups

<table>
<thead>
<tr>
<th>DY21</th>
<th>Positive (n=10)</th>
<th>Negative Total (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnett’s type,</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Autoantibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antinuclear factor</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Tophosomerase I</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Centromere (PBC*)</td>
<td>3</td>
<td>3 (80)</td>
</tr>
<tr>
<td>RNP</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>ss-A(Re)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SS-B(Le)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ssDNA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Smooth muscle</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

PBC = primary biliary cirrhosis.
inflammatory rheumatic disorders. Increased concentrations of suPAR in plasma may contribute to future work on the pathogenesis of the disease.

Table 1 Period average values of corresponding paracartilaginous and clinical variables of 16 patients with rheumatoid arthritis followed up prospectively divided into two groups with or without progressive erosive changes on radiographs. Values are medians with range

<table>
<thead>
<tr>
<th>Erosive progression (n=5)</th>
<th>No erosive progression (n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>suPAR (µg/l)</td>
<td></td>
</tr>
<tr>
<td>1.51 (0.93–2.73)*</td>
<td>1.03 (0.56–2.09)*</td>
</tr>
<tr>
<td>CRP (mg/l)</td>
<td></td>
</tr>
<tr>
<td>11.4 (6.1–30.1)</td>
<td>11.0 (4.2–29.5)</td>
</tr>
<tr>
<td>ESR (mm/h)</td>
<td></td>
</tr>
<tr>
<td>24 (15–24)</td>
<td>16 (7–38)</td>
</tr>
<tr>
<td>Tender joints (of 28)</td>
<td></td>
</tr>
<tr>
<td>6 (3–20)</td>
<td>4 (0–17)</td>
</tr>
<tr>
<td>Swollen joints (of 28)</td>
<td></td>
</tr>
<tr>
<td>4 (1–8)</td>
<td>2 (0–10)</td>
</tr>
</tbody>
</table>

*P<0.05, non-parametric Mann-Whitney test.

The study group comprised 11 women and five men with a median age of 53.5 years (range 25–80) and a median disease duration of 57 months (range 5–360). Fifteen patients were rheumatoid factor positive and 10 had bony erosions on pretest radiographs. Antirheumatic treatment included methotrexate (11 patients), hydroxychloroquine (two), sulfasalazine (one), and low dose steroids (eight). Clinical evaluation and measurement of suPAR, erythrocyte sedimentation rate (ESR), and C reactive protein (CRP) were done a median number of three times, and the time interval between radiographs was a median of 22 months.

Table 1 shows the results of the study. We found significantly higher suPAR concentrations (p<0.05) in plasma from those patients with RA whose x ray findings showed disease progression than in the patients who had no radiographic signs of progression, but the differences in ESR, CRP, and clinical variables were not significantly different.

This study was a pilot study in a clinical setting and conclusions must be drawn cautiously. The main problems, apart from the small number of patients, are, firstly, that in some of the patients prestudy radiographs were one to two years old. However, this would tend to diminish the differences found between the erosive progressive and nonerosive progressive groups as patients in remission, or with low activity in the study period, could be classified as progressive due to previous activity. Secondly, another possible bias, tending to increase the difference in suPAR between the two groups in this study, is that patients with high clinical activity would probably have had more extensive x ray examinations, increasing the chance of finding new erosions. We did not, however, find a difference in the number of radiographically investigated joints between our two groups of patients.

In conclusion, we find that this study indicates that plasma suPAR may be an easily accessible plasma marker of erosive progression in RA, and further studies on the subject are warranted.

OLE SLOT
Departments of Rheumatology, Copenhagen County Hospital Gentofte and Naestved Central Hospital, Denmark

NILS BRUNNER ROSS W STEPHENS
The Finsen Laboratory, Copenhagen University Hospital Righospital, Denmark

Correspondence to: Dr Ole Slot, Department of Rheumatology, Naestved Central Hospital, DK- 4700 Naestved, Denmark

CORRECTION

The Editor of the Annals regrets that we inadvertently published a reply to Dr Barnsley from Drs Ferrari and Russell that contained some misinformation, and offers his apologies to Dr Barnsley. Possibly, Drs Ferrari and Russell were confusing Dr Barnsley with someone else. Firstly, Dr Barnsley is a man and not a woman, as they stated. Secondly, Dr Barnsley did not attend the World Whiplash Congress in Vancouver and has not read the transcripts of it and thus could not be, as Drs Ferrari and Russell commented, “well aware of an impressive study presented there”.

(Note: Corrections print in the journal only appear on the Annals web page (www.annrheumdis.com) and are linked to the original publication.)