Diastolic function abnormalities in rheumatoid arthritis. Evaluation by echo Doppler transmitral flow and pulmonary venous flow: relation with duration of disease

Manuela Di Franco, Michele Paradiso, Antonio Mammarella, Vincenzo Paoletti, Giancarlo Labbadia, Luigi Coppotelli, Egisto Taccari, Antonino Musca

Abstract

Objective—The aim of this study was to evaluate left ventricular filling in patients with rheumatoid arthritis (RA), analysing transmitral flow and pulmonary venous flow, with special regard to age and disease duration.

Methods—32 patients affected by RA according to ARA criteria were selected, without evidence of cardiac disease, and compared with matched control subjects. All patients and the control group were submitted to M-mode, two dimensional, Doppler and colour Doppler (continuous and pulsed wave) echocardiography. The following diastolic parameters were evaluated: transmitralic flow (E/A ratio), pulmonary venous flow (S/D ratio), a-Pw, IVRT and DT.

Results—In RA patients left ventricular filling abnormalities were found characterised by a reduced E/A ratio (mean (SD) 1.16 (0.31) v controls 1.37 (0.32); p =0.02) and an increased S/D ratio (1.43 (0.40) v controls 1.22 (0.29); p = 0.017). In the group of patients a relation was found between E/A ratio and disease duration (r = 0.40, p =0.01 Spearman rank correlation).

Conclusions—At present, it is concluded that RA patients, in absence of clinical evidence of heart disease, show diastolic dysfunction characterised by impaired E/A and S/D ratio. The relation between transmitral flow alteration and disease duration suggests a sub-clinical myocardial involvement.

Long term survival of patients with rheumatoid arthritis (RA) is shorter compared with the general population or control subjects without RA. Among the different causes of death, increased mortality from heart disease with high prevalence of congestive heart failure was reported in many studies. Necropsy studies showed a high incidence of pericardial, myocardial and endocardial involvement in RA patients. However, cardiac disease is often clinically silent and is rarely a severe life threatening complication in RA. Cardiac failure is the result of either systolic or diastolic dysfunction, or both. Left ventricular (LV) diastolic dysfunction is usually attributable to common structural abnormalities such as hypertrophy or interstitial fibrosis and impaired myocyte relaxation resulting from ischaemia. Doppler echocardiography is a sensitive, and non-invasive method of detecting cardiac abnormalities and systolic and/or diastolic function.

The aim of this study was to evaluate left ventricular filling abnormalities in RA patients, without apparent cardiovascular disease, with special regard to age and disease duration.

Methods

The study was carried out on 32 outpatients (four men and 28 women, mean (SD) age 50 (10), range 34–65 years) attending the Rheumatology Unit of the University of Rome “ La Sapienza”. All patients were affected by RA according to ARA criteria of 1987. Duration of disease ranged from 3 to 26 years (mean (SD) 9 (6)). Informed consent was obtained from subjects enrolled and the study was approved by the local ethics committee. Thirty three normal subjects, (eight men and 24 women, mean (SD) age 49 (7), range 38–65 years) were selected as controls. None of the subjects included in this study had evidence of cardiac disease, hypertension or diabetes mellitus as assessed by history, physical examination and standard 12-lead ECG. All patients were checked for number of tender and swollen joints and submitted to laboratory investigations including erythrocyte sedimentation rate (ESR), C reactive protein (CRP), complete blood count, serum protein electrophoresis, serum creatinine, serum transaminases, rheumatoid factor (latex agglutination test) and anti-nuclear antibody.

Echocardiography

The study was performed using an Hewlett-Packard Sonos 2000 ultrasound imaging system with a 2.0–2.5 MHz transducer. All
Table 1 Echocardiographic and Doppler variables in patients and control subjects

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA (mm)</td>
<td>34.79 (3.91)</td>
<td>37.50 (4.94)*</td>
</tr>
<tr>
<td>LVD (mm)</td>
<td>47.45 (4.65)</td>
<td>48.05 (3.90)</td>
</tr>
<tr>
<td>LVS(mm)</td>
<td>29.31 (3.15)</td>
<td>29.9 (2.95)</td>
</tr>
<tr>
<td>LV mass (g)</td>
<td>145.27 (47.29)</td>
<td>146.60 (38.32)</td>
</tr>
<tr>
<td>LVI mass (g/m²)</td>
<td>87.21 (21.96)</td>
<td>87.93 (22.46)</td>
</tr>
<tr>
<td>FS (%)</td>
<td>38.20 (3.69)</td>
<td>37.81 (3.1)</td>
</tr>
<tr>
<td>EF (%)</td>
<td>76.3 (7.10)</td>
<td>76.1 (6.40)</td>
</tr>
<tr>
<td>DT (ms)</td>
<td>72.77 (8.78)</td>
<td>75.38 (13.88)</td>
</tr>
<tr>
<td>A (cm/s)</td>
<td>55.65 (11.82)</td>
<td>68.91 (20.89)†</td>
</tr>
<tr>
<td>E/A</td>
<td>1.37 (0.32)</td>
<td>1.16 (0.31)‡</td>
</tr>
<tr>
<td>S/D</td>
<td>55.82 (10.77)</td>
<td>59.86 (12.44)</td>
</tr>
<tr>
<td>S (cm/s)</td>
<td>48.48 (13.19)</td>
<td>44.16 (11.77)</td>
</tr>
<tr>
<td>D (cm/s)</td>
<td>1.22 (0.29)</td>
<td>1.43 (0.40)‡</td>
</tr>
<tr>
<td>A-pw (cm/s)</td>
<td>26.97 (4.75)</td>
<td>27.46 (3.89)</td>
</tr>
<tr>
<td>IVRT (ms)</td>
<td>76.43 (10.20)</td>
<td>79.53 (12.79)</td>
</tr>
<tr>
<td>DT (ms)</td>
<td>171.65 (22.80)</td>
<td>172.36 (44.31)</td>
</tr>
</tbody>
</table>

LV: left ventricular; LA: left atrial cavity dimension; LVD: LV end diastolic dimension; LVS: LV end systolic dimension; FS: LV fractional shortening; EF: LV ejection fraction; E/A: ratio between early diastolic (E) and late diastolic (A) flow velocity; DT: deceleration time of flow velocity in early diastole; IVRT: isovolumic relaxation time; S/D: ratio between peak pulmonary venous flow velocity during ventricular systole (S) and during diastole (D); A-pw: peak reverse pulmonary venous flow velocity at atrial contraction.

Patients and control group were submitted to M-mode, two dimensional and Doppler and colour Doppler (continuous and pulsed wave) echocardiography. The cardiac chamber dimensions and wall thickness were obtained from M-mode echocardiography. Left ventricular mass was calculated by M-mode measurements at end-diastole by Penn convention.

Fractional shortening (FS) and ejection fraction (EF) according to Simpson’s formula were calculated. Segmental LV function was evaluated using two dimensional long axis and short axis parasternal views and four chamber apical view. Doppler echocardiography was used to obtain transmitral flow and pulmonary venous flow determined from the apical four chamber view. To record transmitral flow the sample volume was carefully positioned at the tip of the leaflets of mitral valve. The following variables were evaluated as parameters of left ventricular filling: peak of early diastolic (E) and late diastolic (A) flow velocity, E/A ratio, deceleration time of flow velocity in early diastole (DT) and isovolumic relaxation time (IVRT).

To obtain pulmonary venous flow the sample volume was placed at the orifice of the left anterior pulmonary vein. The variables measured included peak pulmonary venous flow velocity during ventricular systole (S), peak pulmonary venous flow velocity during ventricular diastole (D), S/D ratio and peak reverse pulmonary venous flow velocity at atrial contraction (A-pw). The echocardiographic images were examined by two blinded investigators and no significant interobserver variability was detected.

STATISTICAL ANALYSIS

Data are given as mean (SD). The statistical analysis Wilcoxon’s rank sum test and χ² test were used. A value of p < 0.05 was considered statistically significant. Spearman’s correlation coefficient test was used to explore the relation between the study variables.

Results

There were no differences between the two groups regarding ventricular cardiac chambers dimensions, left ventricular mass and wall thickness, except for the left atrial cavity dimension (p=0.03) (table 1). None of the control group or the group of patients had left ventricular wall motion abnormalities and both groups had normal systolic function. In RA patients we have found abnormalities of the left ventricular filling characterised by a reduced E/A ratio (p = 0.02) and an increased S/D ratio (p = 0.02) (table 1). We did not find any statistically significant differences regarding other diastolic filling parameters. Moreover in the group of patients we found a relation between E/A ratio and disease duration (r² = 0.40, p =0.01; fig 1). There was no statistically significant correlation between all echocardiographic parameters and disease activity, presence of rheumatoid factor, number of joints involved or Ritchie index.

Discussion

The main feature of our study was the selection of patients affected by RA, without clinical evidence of heart disease and their comparison with a control group matched for sex and age. Our results show significant differences between RA patients and the control group in left atrial size and diastolic function of the left ventricle assessed by transmitral flow (TF) and pulmonary venous flow (PVF), in absence of systolic abnormalities. The use of the Doppler echocardiography technique to obtain left ventricular filling profile from TMF is considered a reliable method. In addition, during diastole, left ventricle, left atrium and pulmonary veins form a “common chamber” that is continuous with the pulmonary capillary bed. Therefore the evaluation of PVF in addition to TF could represent a further parameter of diastolic function. Previous studies showed abnormalities in diastolic function in RA patients assessed by TF, and as far as we know, our study is the first report aimed at investigating diastolic function also assessed by PVF. Our results confirm abnormalities of TF.

Figure 1 Scatterplot of the relation between mitral E/A wave velocity ratio and disease duration.
Transmitral and pulmonary venous flow in rheumatoid arthritis

229

ments suggest a sub-clinical myocardial involve-

ment during the course of disease. These find-
ings suggest an intrinsic myocardial abnormality.

In fact histopathological studies have reported non-specific myocarditis, granulomatous lesions in myocardium, secondary amyloidosis, coronary vasculitis and diffuse fibrosing lesions in RA. So, these lesions could be responsible for abnormal left ven-

tricular filling and consequently for mild left atri

enlargement. In our study we found a statistic-

ally significant correlation between disease

duration and alteration of diastolic function

expressed by E/A ratio, independently from the

age of disease onset. This result is in agreement

with a recent report that showed a correlation

between disease duration and an index of LV

relaxation evaluated by M-mode echocardiog-

raphy (+dD/dt); those results were not found

by using Doppler index (E/A). It is possible

that the longer period of disease of our patients

caused a more evident diastolic dysfunction. In

conclusion, we found a relation between diastolic dysfunction expressed by E/A ratio

disease duration in RA patients without clinical evidence of heart disease, independ-

ently from the age of disease onset. These find-
ings suggest a sub-clinical myocardial involve-

ment during the course of disease.

We gratefully acknowledge Ennio Rinaldi for echocardiographic technical assistance.

1 Pincus T, Callahan LF. Taking mortality in rheumatoid arthritis seriously - predictive markers, socioeconomic sta-

3 Lebowitz W B. The heart in rheumatoid arthritis (reuma-

4 Apstein CS, Eberly FR. Diastolic function and dysfunction with exercise hyper trophy, ischemia, and heart failure. Cardio-

logy 1998;43:1269–79.

5 Arnett FC, Edworthy S M, Bloch D A, McShane D J, Fries J F, Cooper NS, et al. The American Rheumatism Associa-

tion 1987 revised criteria for the classification of rheuma-

6 Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ven-

tricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450–58.

7 Nishimura RA and Taik AJ. Evaluation of diastolic filling of

left ventricle in health and disease: Doppler echocardiogra-

phy is the clinician's Rosetta Stone. J Am Coll Cardiol
1997;30:8–18.

8 Keren G, Shezer J, Megidish R, Levitt B, Laniado S. Pulmonary venous flow pattern - its relationship to cardiac
dynamics. A pulsed Doppler echocardiographic study. Cir-

tis: an echocardiographic study. Cardiology 1993;89:3

234–9.

10 Corrao S, Salli L, Arnese S, Scaglione R, Pinto A, Licata G. Echo-Doppler left ventricular filling abnormalities in

patients with rheumatoid arthritis without clinically evident cardiovasculardisease. Eur J Clin Invest 1996;26:

239–7.

11 Corrao S, Salli L, Arnese S, Scaglione R, Amato V, Ceca-

253–6.

12 Sagie A, Benjamin EJ, Galderisi M, Larson MG, Evans JC,

Fuller DL, et al. Reference values for Doppler indexes of

left ventricular diastolic filling in the elderly. J Am Soc

13 Mustonen J, Laakso M, Hirvonen T, Mutru O, Pirnes M, Vainio P, et al. Abnormalities in left ventricular diastolic func-

tion in male patients with rheumatoid arthritis without clinically evident cardiovascular disease. Eur J Clin Invest

1993;23:246–53.

15 Montecucco C, Gobbi G, Perlini S, Rossi S, Grandi M,

Caperoli R, et al. Impaired diastolic function in active rheu-

matoid arthritis. Relationship with disease duration. Clin

characterised by a reduced E/A ratio, and also show changes of PVF, with increased S/D ratio, in RA patients compared with controls. In agreement with other reports we did not find any correlation between disease activity parameters, clinical findings, articular impairment and diastolic function abnormalities. The progressive impairment of diastolic function with age is well known, but in our study the age of the patients was matched with the control group and there was no statistically significant difference in the mean age. No difference in LV mass between patients and controls was found. Moreover increased LV mass in RA is still debated. The diastolic function abnor-

malities that we found, in absence of LV hyper-

trophy, could suggest an intrinsic myocardial abnormality. In fact histopathological studies have reported non-specific myocarditis, granulomatous lesions in myocardium, secondary amyloidosis, coronary vasculitis and diffuse fibrosing lesions in RA. So, these lesions could be responsible for abnormal left ven-

tricular filling and consequently for mild left atri

enlargement. In our study we found a statistic-

ally significant correlation between disease

duration and alteration of diastolic function

expressed by E/A ratio, independently from the

age of disease onset. This result is in agreement

with a recent report that showed a correlation

between disease duration and an index of LV

relaxation evaluated by M-mode echocardiog-

raphy (+dD/dt); those results were not found

by using Doppler index (E/A). It is possible

that the longer period of disease of our patients

caused a more evident diastolic dysfunction. In

conclusion, we found a relation between diastolic dysfunction expressed by E/A ratio

disease duration in RA patients without clinical evidence of heart disease, independ-

ently from the age of disease onset. These find-
ings suggest a sub-clinical myocardial involve-

ment during the course of disease.

We gratefully acknowledge Ennio Rinaldi for echocardiographic technical assistance.
Diastolic function abnormalities in rheumatoid arthritis. Evaluation by echo Doppler transmitral flow and pulmonary venous flow: relation with duration of disease

Manuela Di Franco, Michele Paradiso, Antonio Mammarella, Vincenzo Paoletti, Giancarlo Labbadia, Luigi Coppotelli, Egisto Taccari and Antonino Musca

doi: 10.1136/ard.59.3.227

Updated information and services can be found at:
http://ard.bmj.com/content/59/3/227

These include:

References

This article cites 15 articles, 2 of which you can access for free at:
http://ard.bmj.com/content/59/3/227#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Connective tissue disease (4253)
- Degenerative joint disease (4641)
- Immunology (including allergy) (5144)
- Musculoskeletal syndromes (4951)
- Rheumatoid arthritis (3258)
- Clinical diagnostic tests (1282)
- Radiology (1113)
- Radiology (diagnostics) (750)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/