A successful renal transplantation in Behçet’s syndrome

Renal involvement is not frequent in Behçet’s syndrome (BS) and consists of occasional reports of patients suffering from glomerulonephritis, IgA nephropathy and renal amyloidosis.1 We present the successful outcome of a renal transplantation in a patient who had end stage renal failure secondary to glomerulonephritis. To our knowledge, this is the first patient with BS to receive an organ transplantation.

The detailed history of this patient at the time of the diagnosis of glomerulonephritis was the subject of a case report in 1991.2 In brief, she was 21 years old when she developed recurrent oral and genital ulcers, bilateral uveitis, erythema nodosum, folliculitis, and intermittent arthritis of the knees. Two years later, she was referred to our centre for further evaluation of eye symptoms. She had no active mucocutaneous lesions at that time, the pathergy reaction was positive and she was diagnosed as LLA BS. It was decided to prescribe only local drops for her mild eye involvement. Three months later she experienced two ocular episodes resulting in a sharp decline of visual acuity and azathioprine 2.5 mg/kg/day was added. Two weeks later she was admitted to the hospital because of microscopic haematuria. She was ANA negative, the anti-DNA and serum complement levels were normal. Her glomerular filtration rate was 67 ml/min. An open renal biopsy showed diffuse proliferative glomerulonephritis and weak focal segmental positivity of IgA and IgM. She was treated with three boluses of 1 g methylprednisolone and was discharged prescribed azathioprine 150 mg/day, aspirin 300 mg/day and prednisone 30 mg/day. She was well except for occasional mucocutaneous symptoms and a mild non-localised episode during the next four years. However her renal function deteriorated progressively despite uninterrupted treatment with azathioprine and changing doses of prednisone and she was put on regular haemodialysis at 31 years of age. Her glomerular filtration rate was 17 ml/min. At 35 years of age, she received a kidney from her mother. The graft function started immediately and she was prescribed maintenance immunosuppression with azathioprine, cyclosporin A and methylprednisolone. An acute interstitial type rejection on the 11th day of transplantation was treated successfully with pulsed corticosteroids. Now 40 months after transplantation, she has normal renal function and is free of any symptoms of BS except for occasional oral ulcers.

We had some hesitation in performing a renal transplantation in our patient initially because of the lack of any previous experience and particularly because of our concern for the heightened inflammatory response of BS patients to simple penetrating trauma that is best characterised by the pathergy reaction.3 This reaction, however, is not only limited to the skin and development of aneurysms after vascular punctures and evolutions of synovitis after arthrocentesis has been observed.4 Furthermore, postoperative complications leading to a poor outcome such as occlusions of grafts/anastomoses after the surgical treatment of aneurysms or periavalvular leakage and suture breakdown after aortic valve replacement5 have been reported in BS patients. As these complications are probably related to the pathergy phenomenon of BS, you would also reasonably expect problems after an organ transplantation, an operation with arterial and venous anastomoses. On the other hand, we had previously shown that despite the increased inflammation, wound healing after full thickness skin punch biopsies is not changed in BS.6

We have not experienced any of the feared complications after the transplantation procedure in this instance. One reason for this favourable outcome might be that our patient was female. It is known that BS runs a milder disease course in women compared with men.7 Additionally, the rather intensive immunosuppressive/anti-inflammatory post-transplant drug use might also have contributed to the diminished disease activity of our patient as well as to the prevention of a reaction at the site of the transplant. Whatever it might be related to, the outcome in our patient suggests that BS patients can undergo renal transplantation with a satisfactory outcome.

SUHEYLA APAYDIN
Esenkent Training and Research Hospital
UGER ULKU
Division of Nephrology, Department of Internal Medicine
VEDAT HAMURUYDAN
HASAN YAZICI
Division of Rheumatology, Department of Internal Medicine
MUZAFFER SARIYAR
Department of Surgery, Cerrahpasa Medical Faculty, University of Istanbul, Istanbul, Turkey

Correspondence to: Dr V Hamuryudan, Vesipasa sokak 100, Yil Sitesi, I Blok D16 Uskudar, 81190 Istanbul, Turkey.

Lymphocyte phenotypes in systemic sclerosis

Although the pathophysiology of systemic sclerosis (SSc) is not fully clarified, there are considerable data implicating abnormalities of microvascular changes, fibroblast activa- tion and immune system abnormalities. Immune system activation has been proposed as a stimulus in both fibrotic and vascular damage.7 To investigate the immune system abnormalities in the pathogenesis of SSc we evaluated lymphocyte phenotypes in patients with SSc and health controls. (Epics Profile II) for total T (CD3), T helper (CD4), T suppressor (CD8), B lymphocyte cell surface marker (CD19), activa- tion marker (CD25) and natural killer cell surface marker NKH-1 (CD56).

We studied 29 patients (27 women, two men) 16 limited, 12 diffuse and one overlap who fulfilled preliminary criteria for classification of SSc. Anti-nuclear antibody was positive in 25 (86.2%) and anti-Scl70 anti- bodies was positive in seven (24.1%) patients. The age range of the patients was 20–63 years (mean (SEM) 50 (3)) and the mean (SEM) disease duration was 5.6 (5.5) years. Patients were receiving no medication nor had received any immunosuppressive agent for at least three months. Controls were 12 aged and sex matched healthy volunteers with an age range from 27–51 years.

Data were compared for significance Student’s unpaired t test.

Table 1 summarises lymphocyte phenotypes in patients with SSc and healthy controls.

We found a higher expression of T cell activation marker CD25+ and NK cell main surface marker CD56+. In lymphocyte pheno- types there was not any difference among disease subsets and CD25+ and CD56+ were not correlated with the disease duration.

Immune system abnormalities have been suspected in the development of SSc because of the presence of autoantibodies, changed cytokine production and evidence of overlap with other autoimmune diseases. It was suggested that immune system changes play the major part in the development of vascular injury and fibrosis. Previous reports on T lymphocyte subpopulations in SSc are partially conflicting. Melendro et al8 demonstrated that there was no significant difference in the levels of CD3+ and CD8+ in 22 SSc patients and control group but in rheumatoid arthritis (RA) CD3+ and CD8+, in Sjögren’s syndrome CD3+, CD4+ and CD8+ levels were significantly decreased compared with those of controls and they suggested that the abnormalities in immune regulatory T cell circuits leading to autoimmunity are different in each connective tissue disease.

<table>
<thead>
<tr>
<th>Serum</th>
<th>Systemic sclerosis (n=29)</th>
<th>Control (n=12)</th>
<th>t Value</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3 (%)</td>
<td>71 (9)</td>
<td>69 (9)</td>
<td>0.660</td>
<td>>0.05</td>
</tr>
<tr>
<td>CD4 (%)</td>
<td>44 (9)</td>
<td>45 (9)</td>
<td>0.110</td>
<td>>0.05</td>
</tr>
<tr>
<td>CD8 (%)</td>
<td>31 (9)</td>
<td>25 (6)</td>
<td>1.914</td>
<td><0.05</td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>1.56 (0.6)</td>
<td>1.84 (0.6)</td>
<td>1.339</td>
<td><0.05</td>
</tr>
<tr>
<td>CD19 (%)</td>
<td>12 (4)</td>
<td>13 (5)</td>
<td>0.445</td>
<td>>0.05</td>
</tr>
<tr>
<td>CD25 (%)</td>
<td>18 (9)</td>
<td>7.1 (3)</td>
<td>4.150</td>
<td><0.05</td>
</tr>
<tr>
<td>CD56 (%)</td>
<td>22 (9)</td>
<td>14 (5)</td>
<td>2.691</td>
<td><0.05</td>
</tr>
</tbody>
</table>

**Unpaired Student’s t test. Data shown as mean (SD).
CD19+ is a cell surface marker of B lymphocytes and we could not observe any difference in the levels of CD19+ and CD56+; CD56+ is a homophilic adhesion molecule from those of Whiteside and Barrett; we and Degiannis et al. reported that CD8+ suppressor/cytotoxic T cells are decreased in SSc patients. However, we found significant increases of CD25+ and this suggests the role of helper cell derived cytokines and growth factors such as interferon, IL2, colony stimulating factor and T lymphocyte subpopulations in peripheral blood of patients with progressive systemic sclerosis. Arthritis Rheum 1983;26:841–7.

Table 1 Frequency of lymphocyte populations and cytokine concentrations in peripheral blood and pericardial fluid

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Peripheral Blood</th>
<th>Pericardial Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocyte population (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4+ T cells</td>
<td>57.8</td>
<td>50.0</td>
</tr>
<tr>
<td>CD25+ cells</td>
<td>17.6</td>
<td>25.0</td>
</tr>
<tr>
<td>CD56+ NK cells</td>
<td>34.3</td>
<td>41.7</td>
</tr>
<tr>
<td>IL1b</td>
<td><6.0</td>
<td><6.0</td>
</tr>
<tr>
<td>IL2</td>
<td>201.8</td>
<td><4.0</td>
</tr>
<tr>
<td>IL4</td>
<td>3.0</td>
<td>240.0</td>
</tr>
<tr>
<td>IL6</td>
<td>26.0</td>
<td><4.0</td>
</tr>
<tr>
<td>IL8</td>
<td><6.0</td>
<td><6.0</td>
</tr>
<tr>
<td>TNFα</td>
<td>19.8</td>
<td>139.9</td>
</tr>
<tr>
<td>INFγ</td>
<td>1.5</td>
<td>32.8</td>
</tr>
</tbody>
</table>

Manufacturer (Genzyme, Boston, MA) detection limits:
- IL2: 3 pg/ml for IL1b, INFγ and TNFα;
- IL6: 4 pg/ml for IL2, 6 pg/ml for IL6, 5 pg/ml for IL10.

The level of protein was 4.1 g/dl (serum = 5.3 g/dl), glucose was 53 mg/dl (serum = 110 mg/dl) and LDH was 471 IU/l (serum = 110 IU/l). PF cultures were negative. No malignant cells were seen to suggest tumor growth. There was no evidence of ascites, pericardial and peritoneal effusion or signs of pericardial effusion or acute kidney failure. The patient was in stage IV SLE with diffuse proliferative glomerulonephritis. The IL6 and IL10 concentrations were higher in PF. IL2 was detected in plasma but not in PF.

The considerable increase in pericardial IL6, with respect to plasma, was of clinical interest. PF concentrations of IL6 in our patient were substantially higher than those observed in PF from patients with inflammatory and non-inflammatory heart conditions. IL6, not only can increase antibody production, but in SLE, B cells have increased reactivity to this cytokine. As in our case, IL6 is usually expressed or increased in the affected organ or system rather than in plasma. IL6 has been found to be higher in cerebrospinal fluid and urine than in serum of SLE patients with CNS disease and active nephritis respectively.

The decreased pericardial lymphocyte count and fluid characteristics observed here are in agreement with other studies. The higher frequency of CD4+ T cells and NK cells in PF could be associated with the observed cytokine concentration pattern. For example, CD4+ memory T cells from SLE patients highly secrete IL10 compared with normal controls.

In summary, different patterns of lymphocyte populations and cytokines were found in both sources, with type 2 cytokines predominating in PF and type 1 in PB. Further studies would be required to confirm the results presented here. In addition, immunocytochemical studies of pericardial connective tissue may shed further light on the pathogenesis of SSc the role of CD4+ T cells in the pathophysiology of SSc and the role of CD8+ cells in the pathogenesis of SSc.

References

1. Whiteside et al. and Barrett et al. by using the percutaneous needle aspiration technique, reported that CD8+ suppressor/cytotoxic T cells are decreased in SSc group, our findings differ from those of Whiteside and Barrett; we and Degiannis et al. have used the more sensitive flow cytometry method and could not find any difference between T lymphocyte subgroups of SSc patients whereas in the pathogenesis of SSc the role of CD4+ and CD8+ T lymphocytes is still obscure. Presence of autoantibodies and hypergammaglobulinemia support the role of humoral immunity but B lymphocytes were rarely found in the skin biopsy specimens. CD19+ is a cell surface marker of B lymphocytes and we could not observe any difference in the levels of CD19+ and CD56+; we can say that B lymphocytes might play only a minor part in the pathogenesis of SSc. CD25+ is one of the subunits of high affinity IL2R and known as the alpha chain of IL2R. Bars et al. established a clear correlation between CD25+ and soluble IL2R in serum. T lymphocytes expressing CD25+ and T helper cell derived cytokines and growth factors stimulate matrix protein synthesis by fibroblasts, resulting in generalised fibrosis and sclerosis. In our study we found significant increases of CD25+ and this surface marker can be used in the follow up the inflammatory stage and activity of SSc. In further studies the investigation of CD25+ T cell subsets CD4, CD8, TCR gamma-delta and other T cell activation markers HLA-DR, CD45RO/CD45RA will be useful to shed light on the pathogenesis of SSc. NK cell abnormalities have been described in a number of conditions such as RA, Sjögren’s syndrome, systemic lupus erythematosus. NK cells are large granular lymphocytes easily identified morphologically by the presence of azurophil granules in their cytoplasm and they commonly express certain cell surface markers such as CD16+ and CD56+; CD56+ is a homophilic adhesion molecule that belongs to the immunoglobulin superfamily. NK cells are the main cellular effectors of the non-specific immune response. On activation, NK cells become cytotoxic, that is, they can kill target cells. The cytolytic activity of NK cells is mediated by the expression of NK cell cytoxicity and the direct destruction of target cells by membrane destruction. NK cells are activated by stimulation with IL2 and IL12. In this study, the absolute number of lymphocytes was lower in PF than in PB (211 × 10⁶/mm³). PF and PB were obtained simultaneously from both sources and clear cells from both sources were isolated by percoll gradient.
tissue are necessary as the composition of lymphocyte and cytokine profiles may differ between pericardial fluid and tissue.

Luis M Vilá, José R Rivera del Río
Department of Internal Medicine, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico

Correspondence to:
Dr L M Vilá, Department of Internal Medicine, Division of Rheumatology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico 00960-6032, USA.

Table 1: Lymphocyte populations in AU patients and controls

<table>
<thead>
<tr>
<th></th>
<th>AU patients (n=146)</th>
<th>Controls (n=31)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytes (no/mm³)</td>
<td>2425.60 (964.44)</td>
<td>2567.74 (820.72)</td>
<td>NS</td>
</tr>
<tr>
<td>CD3 (no/mm³)</td>
<td>1734.20 (726.67)</td>
<td>1835.64 (586.68)</td>
<td>NS</td>
</tr>
<tr>
<td>(%)</td>
<td>71.96 (8.20)</td>
<td>71.27 (4.28)</td>
<td>NS</td>
</tr>
<tr>
<td>CD4 (no/mm³)</td>
<td>1023.91 (489.16)</td>
<td>1032.97 (475.56)</td>
<td><0.05</td>
</tr>
<tr>
<td>(%)</td>
<td>42.56 (9.50)</td>
<td>47.00 (6.13)</td>
<td><0.05</td>
</tr>
<tr>
<td>CD8 (no/mm³)</td>
<td>702.21 (359.67)</td>
<td>675.90 (243.54)</td>
<td>NS</td>
</tr>
<tr>
<td>(%)</td>
<td>29.25 (8.81)</td>
<td>26.72 (6.81)</td>
<td>NS</td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>1.70 (0.89)</td>
<td>1.39 (0.78)</td>
<td>NS</td>
</tr>
<tr>
<td>CD19 (no/mm³)</td>
<td>266.87 (173.44)</td>
<td>335.90 (142.35)</td>
<td>NS</td>
</tr>
<tr>
<td>(%)</td>
<td>10.81 (5.65)</td>
<td>13.64 (5.09)</td>
<td><0.05</td>
</tr>
<tr>
<td>CD4CD45R+ (no/mm³)</td>
<td>406.17 (230.14)</td>
<td>657.70 (301.36)</td>
<td><0.001</td>
</tr>
<tr>
<td>(%)</td>
<td>16.70 (9.99)</td>
<td>25.20 (7.76)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD4CD45R− (no/mm³)</td>
<td>661.53 (338.48)</td>
<td>529.41 (219.04)</td>
<td><0.05</td>
</tr>
<tr>
<td>(%)</td>
<td>27.70 (7.84)</td>
<td>20.77 (6.40)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD8 (no/mm³)</td>
<td>702.21 (359.67)</td>
<td>675.90 (243.54)</td>
<td>NS</td>
</tr>
<tr>
<td>(%)</td>
<td>27.70 (7.84)</td>
<td>20.77 (6.40)</td>
<td>NS</td>
</tr>
<tr>
<td>CD19 (no/mm³)</td>
<td>266.87 (173.44)</td>
<td>335.90 (142.35)</td>
<td>NS</td>
</tr>
<tr>
<td>(%)</td>
<td>10.81 (5.65)</td>
<td>13.64 (5.09)</td>
<td><0.05</td>
</tr>
<tr>
<td>CD4CD45R+ (no/mm³)</td>
<td>406.17 (230.14)</td>
<td>657.70 (301.36)</td>
<td><0.001</td>
</tr>
<tr>
<td>(%)</td>
<td>16.70 (9.99)</td>
<td>25.20 (7.76)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD4CD45R− (no/mm³)</td>
<td>661.53 (338.48)</td>
<td>529.41 (219.04)</td>
<td><0.05</td>
</tr>
<tr>
<td>(%)</td>
<td>27.70 (7.84)</td>
<td>20.77 (6.40)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD8 (no/mm³)</td>
<td>702.21 (359.67)</td>
<td>675.90 (243.54)</td>
<td>NS</td>
</tr>
<tr>
<td>(%)</td>
<td>27.70 (7.84)</td>
<td>20.77 (6.40)</td>
<td>NS</td>
</tr>
<tr>
<td>CD19 (no/mm³)</td>
<td>266.87 (173.44)</td>
<td>335.90 (142.35)</td>
<td>NS</td>
</tr>
<tr>
<td>(%)</td>
<td>10.81 (5.65)</td>
<td>13.64 (5.09)</td>
<td><0.05</td>
</tr>
<tr>
<td>CD4CD45R+ (no/mm³)</td>
<td>406.17 (230.14)</td>
<td>657.70 (301.36)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 1: Lymphocyte populations in AU patients and controls

AU = anterior uveitis, NK = natural killer cells, NS = not significant. Data shown as mean (SEM).

HLA-B27+ anterior uveitis with or without associated spondyloarthritis: clinical and immunological features

Anterior uveitis (AU) is the most common form of uveitis, and may be produced by different causes. An aetiologic diagnosis is commonly established in approximately half of the patients with AU, being seronegative spondyloarthropathies (SA), and mainly ankylosing spondylitis, the most frequent cause of the disease. Approximately 50% of the patients with AU are HLA-B27+ positive; half of them usually presenting with associated SA. The other half are patients with HLA-B27+ but with no associated articular disease (HLA-B27+ AU). Several clinical features have been described to be common in patients with AU associated with HLA-B27, however, these features are similar either in patients with or without associated SA. This is why we conducted this clinical and immunological study in patients with AU positive for HLA-B27 with the aim of discovering the differences between patients with and without associated SA.

A prospective study was conducted involving 146 patients with AU seen between April 1988 and October 1995 referred from an ophthalmologist with the syndromic diagnosis of AU of unknown origin. Patients were classified in three aetiological groups: (1) Idiopathic anterior uveitis (IAU), all were HLA-B27+; (2) HLA-B27+ AU without associated SA, and (3) HLA-B27+ AU with associated SA.

Of the 146 patients with AU studied, 98 had IAU (67.1%) and 48 were positive for HLA-B27+ of them, 19 (13%) had associated SA (HLA-B27+ AU with SA), and 29 (19.9%) did not (HLA-B27+ AU). No significant differences were found in clinical features of AU between the three study groups. Erythrocyte sedimentation rate, C reactive protein and IgA were found to be more increased in patients than in control, although without differences between the three groups of patients. With regard to lymphocytopenia, we found some differences between our patients and control group (table 1). Patients with IAU showed lower percentages (mean (SEM)) of CD4CD45R+ (15.47 (9.49)%) than controls (25.20 (7.76)%) and patients with SA (21.97 (10.16)%) (fig 1). Patients with IAU had higher percentages of CD4CD45R− (28.46 (7.89)%) than SA patients (23.23 (6.81)%) and the control group (20.77 (6.40)%) (fig 2).

Associated systemic pathology was demonstrated in 13% of the cases (19 patients with seronegative SA). 29 patients (19.9%) were HLA-B27+ without SA; not associated disease was found in the other 98 cases of AU (67.1%), which were classified as idiopathic. Seronegative SA are the most frequent entities found in uveitis patients, representing between 6% and 13% of all forms of uveitis, and 20 to 25% of the AU. HLA-B27+ AU without associated SA represents about 25% of the AU; it has been considered by some authors a “frustrated” or monosymptomatic form of ankylosing spondylitis, but today, it is still unclear as to whether or not it is the same clinical entity, or whether these patients will develop seronegative SA in future. We did not find differences in clinical features of AU between HLA-B27+ and HLA-B27− patients. A deficit of CD4CD45R+ (suppressor-inducer T lymphocytes) and an increase of CD4CD45R− (memory T lymphocytes), such as in our patients with IAU, have been described in certain autoimmune disease, suggesting that these disorders could be attributable to these changes. In addition, differences found in the values of CD4CD45R cells between patients with IAU and SA suggest a different physiopatho- genetic mechanism in the development of both diseases.

Figure 1: Absolute values of CD4CD45R+ cells. Patients with IAU had absolute values lower than the control group, and percentages lower than those of SA patients (p<0.001). IAU= idiopathic anterior uveitis; AU= anterior uveitis; SA= spondyloarthritis.

Figure 2: Percentages of CD4CD45R− cells. Patients with IAU had higher percentages than the healthy subjects and SA patients (p<0.001). Abbreviations as in figure 1.
diseases. The immunological features studied included humoral and cellular, in HLA-B27+ patients without associated SA were similar to those of patients with SA, which suggest a common pathogenetic link between both forms of AU. It is possible that the long term follow up of these patients will clarify whether or not it is the same entity.

We are indebted to Ms E Velasco for assistance in the preparation of the manuscript.

FRANCISCO RIVERA-CIVICO JUAN JIMÉNEZ-ALONSO MARÍA MARTÍN-ARMADA MARÍA TERESA HERRANZ JOSÉ CASTRO FRANCISCO PEREZ-ALVAREZ JI DEL ARBOL

Service of Internal Medicine
MANUEL TORIBIO
Service of Ophthalmology

FRANCISCO SAMANIEGO
Service of Clinical Chemistry and Immunology, “Virgen de las Nieves” University Hospital, Granada, Spain

Correspondence to: Dr J Jiménez-Alonso, Jefe del Servicio de Medicina Interna, Hospital General de Especialidades “Virgen de las Nieves” Avda Fuerzas Armadas 1, 81014 Granada, Spain.

R.S.P.E: six years later

We read with interest the paper by Cantini et al. and would like to comment on it.1

In 1992 we performed a retrospective multicentre study of 27 RS3PE patients. We concluded that personal history of polymyalgia rheumatica (two patients), presence of erosions (one patient) and evolution to haemato logical diseases (two patients concomitantly developed a T lymphoma and one myelodysplastic syndrome) suggested that RS3PE syndrome might not be a distinct clinical entity. At that moment 12 patients were asymptomatic and 13 required treatment. This was reported elsewhere.2

Now, six years later, we have reviewed the original cohort of patients with the RS3PE syndrome. A questionnaire was sent to the participating rheumatologists. The survey focused on articular symptoms, treatment and evolution. The current cohort was composed of 22 patients (male 16; female 6; mean age:77.9; range 64–91). Four patients died (the three with haemato logical diseases, one stroke) and one was not located. Thirteen patients were asymptomatic and without treatment, in contrast nine required treatment, namely corticosteroids (6), gold salts (1), clo roquine (1) and NSAID (1). Interestingly, two of the patients were identified by their rheumatologist as having a seronegative rheumatoid arthritis, another patient had a chronic disease with separate corticosteroid responsive episodes of bilateral hand oedema and polylymphatic syndromes at different times. Last but not one patient developed Raynaud’s phenomena, both hands had sclerodactyly. A nailfold capillary microscopy showed a decreased number of capillary loops, which were widened, suggesting systemic sclerosis.

Our results suggest that RS3PE syndrome has a good prognosis. At least half of the patients are asymptomatic and without treatment six years later. However, there is a subset of patients that have other diseases. Although pure RS3PE syndrome does exist the evolution should be closely monitored.

Authors’ reply

We appreciate the comment by Olivé et al on our article on RS3PE. They reviewed 27 previously described RS3PE patients after a follow-up of six years.

As we suggested in a previous report, they confirmed that RS3PE syndrome should be considered a heterogenous condition associated with different inflammatory rheumatic diseases and also with neoplastic disorders.

In our study none of the 23 patients with RS3PE syndrome developed clinical manifestations supporting the diagnosis for another disease. The different study design and selection of patients may in part explain the subset of patients with other diseases and with a worse prognosis observed by Olivé et al.

We designed a prospective follow up study excluding patients satisfying the criteria for the diagnosis of polymyalgia rheumatica, rheumatoid arthritis and seronegative spondylarthropathies. Moreover, patients with a clinical history of cancer were excluded from the study. In their original report1 these authors performed a retrospective study including all patients with remitting distal extremity swelling with pitting oedema. They recruited also patients not evaluated for spondylarthropathies, which may be associated with distal extremity swelling with pitting oedema.3

However, in their retrospective evaluation Olivé et al. found that 13 of 22 (59%) patients were asymptomatic and drug free over a six year follow up period, confirming that RS3PE not associated with other conditions and with a good prognosis does exist.

The problem is how to label this clinical picture. As discussed in our article,4 the similarities of demographic, clinical and MRI findings between patients with “pure” RS3PE syndrome and those with polymyalgia rheumatica and the concurrence of the two syndromes suggest that these conditions may be part of the clinical spectrum of the same disease. In the series of Olivé et al. the patient with a clinical course characterised by alternating relapses and a history of distal extremity swelling oedema or polylymphatic symptoms further supports our hypothesis. Even those RS3PE patients successively diagnosed as having seronegative rheumatoid arthritis (elderly onset rheumatoid arthritis) do not conflict with our conclusions. Healey described patients who developed episodes of polylymphatic rheumatism and seronegative rheumatoid arthritis at different times during follow up.5

Similar clinical characteristics have been recently described in a population based cohort of patients with giant cell arteritis followed up over a 42 year period. Four of the six patients who fulfilled the criteria for the diagnosis of rheumatoid arthritis during the follow up experienced multiple separate episodes of symmetrical arthritides, proximal symptoms of polymyalgia rheumatica and distal extremity swelling with pitting oedema.6

Authors’ reply

FABRIZIO CANTINI
2nd Divisione di Medicina, Ospedale di Prato, Italy

CARLO SALVARIANI
Servizio di Reumatologia, Azienda Ospedaliera, Aspedale S Maria Nuova, Reggio Emilia, Italy

IGNAZIO OLVIERI
Servizio di Reumatologia, Ospedale S Carlo, Potenza, Italy

Letters, Matters arising
Correspondence to: Dr F. Cantini, 2nd Divisione di Medicina, Ospedale di Prato, Fiazza Ospedaliero 1, 59100 Prato, Italy.

1 Olivieri I, Salvarani C, Cantini F. Remitting dis- tinct syndrome or a clinical feature of different insidious courses of rheumatic diseases? J Rheumatol 1997;24:249–52.

4 Olivieri I, Pagani F, Ghirardi G, Fazio P, Pierson P, Arthamon R, et al. The cellular mechanisms whereby apatite crystals induce MMP-1 in human OA (HOA) fibroblasts with a potency equivalent to that of IL1 and TNF in vitro. Furthermore, apatite crystals IL1 and TNF act in synergy to increase MMP-1 production by HOA fibroblasts. Efforts continue to discover methods to inhibit the pathogenic effects of IL1 and TNF. Why not inhibit the effects of apatite crystals?

crystals.

Swan doubt that apatite crystals are of patho-

tic crystals in joint degeneration

100 Prato, Italy.

nuclear factor

B (NF-

ty.

suggestion that, like cytokines, they could serve as a novel therapeutic target as well as a prognostic marker. Without further study, only those with crystal balls can tell.

Geraldine M McCarthy

Department of Clinical Pharmacology, Royal College of Surgeons in Ireland and Mater Misericordiae Hospital, Dublin

3 Crystals in arthritis: new age nonsense or novel therapeutic target?

Apatite crystals are present in up to 70% of fluids from degenerated joints. Their presence correlates strongly with radiographic evidence of cartilage degeneration and is associated with larger joint effusions when compared with joints without crystals. Whether the presence of apatite crystals is a cause of cartilage damage or an effect of cartilage damage is unclear. Several lines of evidence suggest that apatite crystals cause joint destruction. For example, apatite crystals induce both mitogen- and pro-inflammatory syntheses in synovial fibroblasts and chondrocytes in vitro. They also induce matrix metalloproteinase (MMP) synthesis and secretion, thus promoting tissue damage. The cellular mechanisms whereby apatite crystals induce such responses are cur- rently under investigation. Like many other growth promoting agents, apatite crystals induce a variety of transcription factors such as nuclear factor kappa B (NF-kB) and activator protein 1 (AP-1). They also induce mitogen activated protein kinases (MAPK) and protein kinase C (PKC). Furthermore, such activation is specific as the crystals do not activate protein tyrosine kinases (PTK) and phosphatidylinositol-3-kinases (PI3K). If the crystals were present simply as a consequence of joint destruction, we would expect them to be present in other arthropathies characterised by cartilage dissolution and synovial lining prolif- eration such as rheumatoid arthritis (RA). However, apatite crystals are rarely found in RA joint fluids. Thus, current data support the postulated reality of apatite crystals in synovial fluids.

On the other hand, the clinical significance of apatite crystals in joint degeneration continues to be questioned. Dieppe and Swan doubt that apatite crystals are of patho-

tic arthritis patients

The paper “Mortality in rheumatoid arthritis patients with disease onset in the 1980s” is of considerable interest. A decrease in mortal- ity risk for rheumatoid arthritis (RA) patients in more recent years would be important, especially if only in the first 10 years of RA. How- ever, this inception cohort differs from those previously published so that direct com- parison is possible. As earlier (and older and larger) studies have shown standardised mor- tality ratios of two to three, a finding of “nor- mal” mortality might imply that more recently used treatment strategies are revers- ing the excessive mortality in RA previously observed.

Yet, even at first perusal, there are a lot of deaths in this series of relatively young people. In the 10 years after a mean age of 51, 18 patients (10%) had died. Over 20 deaths were said to be “expected”. However, using US mortality rates for a population mean aged the same, projected over 10 years, two thirds women, and white, one would expect only 11 deaths using 1996 mortality rates and 12 deaths using 1985 rates, over the 1710 patients years of follow up. While we did not have the age distribution of this RA cohort to calculate precise expectations, these figures should be conservative. Female mor- tality rates in the US white female popula-

Author’s reply

We agree with all the points made by Dr McCarthy. Basic calcium phosphates (BCPs) in synovial fluids may be important, and it may be that their identification will be valuable in relation to future treatments. However, she seems to agree with the only two points made about BCPs in our article (which is about the identification of urate and pyrophosphate crystals): that is, that on the basis of current evidence there is no case for using “doubtful significance”, and that their identifi- cation should have no influence on contem- porary therapeutic decisions.

Paul Dieppe

MRC Health Services Research Collaboration, University of Bristol, Bristol

Mortality in rheumatoid arthritis patients

The paper “Mortality in rheumatoid arthritis patients with disease onset in the 1980s” is of considerable interest. A decrease in mortal- ity risk for rheumatoid arthritis (RA) patients in more recent years would be important, especially if only in the first 10 years of RA. How-

3 Carroll GJ, Stuart RA, Armstrong JA, Breidahl PD, Laing BA. Hydroxyapatite crystals are a frequent finding in osteoarthritic synovial fluid, but are not related to increased concentrations of keratan sulfate or interleukin 1b. J Rheuma- tol 1991;18:861–6.

tion, at 3.4 per 1000 per year at age 51 and 9.0 per 1000 per year at age 61 are presumably higher than those in long lived Malmöhus County, Sweden.

Of interest, in our own larger study with meticulously computed “expected” values in four different populations we also had an “expected” death rate of about 10% to 15% over 10 years. But, these were not inception cohorts and their age at start of follow up was 60.4, 62.6, 59.8, and 69.1 years. Thus, they were much older cohorts. Given the expected doubling of mortality rates each eight years (Gompertz’s law), expected deaths should have been two to three times more in our cohorts than in a cohort beginning at age 51.

Finally, recent studies have not suggested that “rheumatoid” deaths in themselves are the cause of the increased mortality in RA. The observed “excess” deaths are spread around in multiple disease categories, with accelerated atherosclerosis numerically the largest problem and only a slight relative increase in systemic RA complications, gastrointestinal haemorrhage, and infections.

JAMES F FRIES
STANFORD UNIVERSITY, SCHOOL OF MEDICINE, PALO ALTO, CALIFORNIA, USA

Authors’ reply

We were pleased to notice the interest in our paper shown by Drs Fries and Bloch. In reply to their comments we do not consider the death rate of 10% in the cohort as an excessive one compared with the age and sex matched general population. It is not possible to calculate more precise figures of expected deaths knowing the mean age of the cohort only. To clarify this and make comparison possible we enclose a table of the age distribution in our cohort in five year intervals giving the number of observed and expected deaths for each age interval separately.

Women do live longer in Malmöhus County, Sweden than in the US. Female mortality rates in Malmöhus County were 3.76 per 1000 at age 51 and 7.32 per 1000 at age 61 in 1985. In 1996 the corresponding figures were 2.03 per 1000 at age 51 and 3.39 per 1000 at age 61.

We agree that the main cause of death in RA patients very seldom is the rheumatoid disease in itself. This was true also for our study where no certain connection between RA and death was found in any of the cases.

ELISABET LINDQVIST
KERSTIN EBERHARDT
DEPARTMENT OF RHEUMATOLOGY, LUND UNIVERSITY HOSPITAL, SWEDEN

Table 1

<table>
<thead>
<tr>
<th>Age group</th>
<th>Number of patients</th>
<th>Expected mortality</th>
<th>Observed mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-19</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20-24</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25-29</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30-34</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35-39</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40-44</td>
<td>20</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>45-49</td>
<td>27</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>50-54</td>
<td>34</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>55-59</td>
<td>24</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>60-64</td>
<td>19</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>65-69</td>
<td>16</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>70-74</td>
<td>11</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>75-79</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>183</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>
Crystals in arthritis: new age nonsense or novel therapeutic target?

GERALDINE M MCCARTHY

Ann Rheum Dis 1999 58: 723
doi: 10.1136/ard.58.11.723

Updated information and services can be found at:
http://ard.bmj.com/content/58/11/723.1

References

This article cites 14 articles, 7 of which you can access for free at:
http://ard.bmj.com/content/58/11/723.1#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/