A successful renal transplantation in Behçet’s syndrome

Renal involvement is not frequent in Behçet’s syndrome (BS) and consists of occasional reports of patients suffering from glomerulonephritis,1 IgA nephropathy2 and renal amyloidosis.1 We present the successful outcome of a renal transplantation in a patient who had end stage renal failure secondary to glomerulonephritis. To our knowledge, this is the first patient with BS to receive an organ transplantation.

The detailed history of this patient at the time of the diagnosis of glomerulonephritis was the subject of a case report in 1991.1 In brief, she was 21 years old when she developed recurrent oral and genital ulcers, bilateral uveitis, erythema nodosum, folliculitis, and intermittent arthritis of the knees. Two years later, she was referred to our centre for further evaluation of eye symptoms. She had no active mucocutaneous lesions at that time, the pathology reaction was positive and HLA B4. It was decided to prescribe only local drops for her mild eye involvement. Three months later she experienced two ocular episodes resulting in a sharp decline of visual acuity and azathioprine 2.5 mg/kg/day was added. Two weeks later she was admitted to the hospital because of microscopic haematuria. She was ANA negative, the anti-DNA and serum complement levels were normal range. Her glomerular filtration rate was 67 ml/min. An open renal biopsy showed diffuse proliferative glomerulonephritis and weak focal segmental positivity of IgA and IgM. She was treated with three boluses of 1 g methylprednisolone and was discharged prescribed azathioprine 150 mg/day, aspirin 300 mg/day and prednisone 30 mg/day. She was well except for occasional mucocutaneous symptoms and a mild lymphocytic episode during the next four years. However her renal function deteriorated progressively despite uninterrupted treatment with azathioprine and changing doses of prednisone and she was put on regular haemodialysis. In the 14th month of haemodialysis, she received a kidney from her mother. The graft function started immediately and she was prescribed maintenance immunosuppression with azathioprine, cyclosporin A and methylprednisolone. An acute cellular rejection reaction on the 11th day of transplantation was treated successfully with pulsed corticosteroids. Now 40 months after transplantation, she has normal renal function and is free of any symptoms of BS except for occasional oral ulcers.

We had some hesitation in performing a renal transplantation in our patient initially because of the lack of any previous experience and particularly because of our concern for the heightened inflammatory response of BS patients to simple penetrating trauma that is best characterised by the pathology reaction.1 This reaction, however, is not only limited to the skin and development of aneurysms after vascular punctures and episodes of synovitis after arthrocentesis have been observed.4 Furthermore, postoperative complications leading to a poor outcome such as occlusions of grafts/anastomoses after the surgical treatment of aneurysms or perivalvular leakage and suture breakdown after aortic valve replacement4 have been reported in BS patients. As these complications are probably related to the pathergy phenomenon reaction, you would also reasonably expect problems after an organ transplantation, an operation with arterial and venous anastomoses. On the other hand, we had previously shown that despite the increased inflammation, wound healing after full thickness skin punch biopsies is not changed in BS.11 We have not experienced any of the feared complications after the transplantation procedure in this instance. One reason for this favourable outcome might be that our patient was female. It is known that BS runs a milder disease course in women compared with men.11 Additionally, the rather intensive immunosuppressive/anti-inflammatory post-transplant drug use might also have contributed to the diminished disease activity of our patient as well as to the prevention of a reaction at the site of transplantation. Whatever it might be related to, the outcome in our patient suggests that BS patients can undergo renal transplantation with a satisfactory outcome.

SUYEVLA AYAPIDIN
EGISENK ERDEN
UGER ULKU
Division of Nephrology, Department of Internal Medicine
VEIDAT HAMURYUDAN
HASAN YAZICI
Division of Rheumatology, Department of Internal Medicine
MUZAFFER SARIYAN
Department of Surgery, Cerrahpasa Medical Faculty, University of Istanbul, Istanbul, Turkey

Correspondence to: Dr V Hamuryudan, Yevipsapa sokak 100, Yil Sitiyesi, I Bil D6k Uskudar, 81190 Istanbul, Turkey.

Lymphocyte phenotypes in systemic sclerosis

Although the pathophysiology of systemic sclerosis (SSc) is not fully clarified, there are considerable data implicating abnormalities of microvascular changes, fibroblast activation and immune system abnormalities. Immune system activation may play a part as a stimulus in both fibrotic and vascular damage.3 To investigate the immune system abnormalities in the pathogenesis of SSc we evaluated lymphocyte phenotypes in patients with SSc and healthy controls by flow cytometry (Epics Profile II) for total T (CD3), T helper (CD4), T suppressor (CD8), B lymphocyte cell surface marker (CD19), activation marker (CD25) and natural (NK) cell surface marker NKH-1 (CD56).

We studied 29 patients (27 women, two men) 16 limited, 12 diffuse and one overlap who fulfilled preliminary criteria for classification of SSc.3 Anti-nuclear antibody was positive in 25 (86.2%) and anti-Scl70 antibodies was positive in seven (24.1%) patients. The age range of the patients was 20–63 years (mean (SEM) 40 (5)) and the mean (SEM) disease duration was 5.5 (5.5) years. Patients were receiving no medication nor had received any immunosuppressive agent for at least three months. Controls were 12 aged and sex matched healthy volunteers with an age range from 27–51 years. Data were compared for significance for Student’s unpaired t test.

Table 1 summarises lymphocyte phenotypes in patients with SSc and healthy controls.

We found a higher expression of T cell activation marker CD25+ and NK cell main surface marker CD56+. In lymphocyte phenotypes, there was not any difference among disease subsets and CD25+ and CD56+ were not correlated with the disease duration.

Immune system abnormalities have been suspected in the development of SSc because of the presence of autoantibodies, changed cytokine production and evidence of overlap with other autoimmune diseases. It was suggested that immune system changes play the major part in the development of vasculopathy and fibrosis. Previous reports on T lymphocyte subpopulations in SSc are partially conflicting. Melendro et al demonstrated that there was no significant difference in the levels of CD8+ T cells in SSc compared with 22 SSc patients and control group but in rheumatoid arthritis (RA) CD3+ and CD8+, in Sjögren’s syndrome CD3+, CD4+ and CD8+ levels were significantly decreased compared with those of controls and they suggested that the abnormalities in immune regulatory T cell circuits leading to autoimmunity are different in each connective tissue disease.

Table 1 Lymphocyte phenotypes in patients with SSc and healthy controls

<table>
<thead>
<tr>
<th>Serum</th>
<th>Systemic sclerosis (n=29)</th>
<th>Healthy controls (n=12)</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3 (%)</td>
<td>71 (9)</td>
<td>69 (9)</td>
<td>0.660</td>
<td>>0.05</td>
</tr>
<tr>
<td>CD4 (%)</td>
<td>44 (9)</td>
<td>45 (9)</td>
<td>0.110</td>
<td>>0.05</td>
</tr>
<tr>
<td>CD8 (%)</td>
<td>31 (9)</td>
<td>25 (6)</td>
<td>1.914</td>
<td>>0.05</td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>1.56 (0.6)</td>
<td>1.84 (0.6)</td>
<td>1.339</td>
<td>>0.05</td>
</tr>
<tr>
<td>CD19 (%)</td>
<td>12 (4)</td>
<td>13 (5)</td>
<td>0.445</td>
<td>>0.05</td>
</tr>
<tr>
<td>CD25 (%)</td>
<td>18 (9)</td>
<td>7.1 (3)</td>
<td>4.150</td>
<td><0.05</td>
</tr>
<tr>
<td>CD56 (%)</td>
<td>22 (9)</td>
<td>14 (5)</td>
<td>2.691</td>
<td><0.05</td>
</tr>
</tbody>
</table>

*Unpaired Student’s t test. Data shown as mean (SD).
Whiteides et al and Barrett et al by using the flow cytometry immunofluorescence method, reported that CD8+ suppressor/cytotoxic T cells are decreased in SSc group, our findings differ from those of Whiteides and Barrett; we and Degiannis et al have used the more sensitive flow cytometry method and could not find any difference between T lymphocyte subgroups of SSc patients whereas in the pathogenesis of SSc the role of CD4+ and CD8+ T lymphocytes is still obscure. Presence of autoantibodies and hypergammaglobulinemia support the role of humoral immunity but B lymphocytes were rarely found in the skin biopsy specimens. CD19+ is a cell surface marker of B lymphocytes and we could not observe any difference between the levels of CD19+ and other T cell activation markers HLA-DR, CD45RO/CD45RA. From a SLE patient with cardiac tamponade, IL6 is usually expressed or increased reactivity to this cytokine.

Table 1 Frequency of lymphocyte populations and cytokine concentrations in peripheral fluid from a systemic lupus erythematosus patient with cardiac tamponade

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Peripheral fluid</th>
<th>Pericardial fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocyte population (%)</td>
<td>T CD4+ T cells</td>
<td>57.8</td>
</tr>
<tr>
<td></td>
<td>CD4+ T cells</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>CD8+ T cells</td>
<td>34.3</td>
</tr>
<tr>
<td></td>
<td>B cells</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>NK cells</td>
<td>34.3</td>
</tr>
<tr>
<td>Cytokine concentration (pg/ml)</td>
<td>IL1B</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>IL2</td>
<td><3.0</td>
</tr>
<tr>
<td></td>
<td>IL4</td>
<td><6.0</td>
</tr>
<tr>
<td></td>
<td>IL6</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>IL10</td>
<td><5.0</td>
</tr>
<tr>
<td></td>
<td>TNF â</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>IFNγ</td>
<td>1.5</td>
</tr>
</tbody>
</table>

*Manufacturer (Genzyme, Boston, MA) detection limits: 3 pg/ml for IL1B, INFγ and TNFs; 4 pg/ml for IL2; 6 pg/ml for IL6; 10 pg/ml for IL10.

In summary, the considerable increase in pericardial IL6 concentrations with respect to plasma and PB, may be of interest. Further studies would be required to confirm the observed pericardial IL6 concentration pattern. For example, CD8+ memory T cells from SLE patients highly secrete IL10 compared with normal controls. The decreased pericardial lymphocyte count and fluid characteristics observed here are in agreement with other studies. The higher frequency of CD8+ T cells and NK cells in PB could be associated with the observed cytokine concentration pattern. For example, CD8+ memory T cells from SLE patients highly secrete IL10 compared with normal controls.

In summary, different patterns of lymphocyte populations and cytokines were found in both sources, with type 2 cytokines predominating in PB and type 1 in PB. Further studies would be required to confirm the results presented here. In addition, immunocytochemical studies of pericardial...
tissue are necessary as the composition of lymphocyte and cytokine profiles may differ between pericardial fluid and tissue.

Table 1 Lymphocyte populations in AU patients and controls

<table>
<thead>
<tr>
<th>AU patients (n=146)</th>
<th>Controls (n=311)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytes (no/mm³)</td>
<td>2425.60 (964.44)</td>
<td>2567.74 (820.72)</td>
</tr>
<tr>
<td>CD3 (no/mm³)</td>
<td>1734.20 (726.67)</td>
<td>1835.64 (586.68)</td>
</tr>
<tr>
<td>CD4 (no/mm³)</td>
<td>1023.91 (489.16)</td>
<td>71.96 (8.20)</td>
</tr>
<tr>
<td>CD8 (no/mm³)</td>
<td>544.69 (95.00)</td>
<td>42.56 (9.50)</td>
</tr>
<tr>
<td>CD19 (no/mm³)</td>
<td>266.87 (227.44)</td>
<td>702.21 (359.67)</td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>10.81 (5.65)</td>
<td>29.25 (8.81)</td>
</tr>
<tr>
<td>CD4CD45R+ (no/mm³)</td>
<td>406.17 (306.18)</td>
<td>1.76 (0.89)</td>
</tr>
<tr>
<td>CD4CD45R− (no/mm³)</td>
<td>16.70 (9.99)</td>
<td>26.87 (6.40)</td>
</tr>
<tr>
<td>NK (no/mm³)</td>
<td>300.45 (179.63)</td>
<td>220.50 (81.53)</td>
</tr>
<tr>
<td>CD4CD45R+ (no/mm³)</td>
<td>661.53 (338.48)</td>
<td>219.41 (110.40)</td>
</tr>
<tr>
<td>CD4CD45R− (no/mm³)</td>
<td>27.07 (7.84)</td>
<td>25.20 (7.76)</td>
</tr>
<tr>
<td>NK (no/mm³)</td>
<td>300.45 (179.63)</td>
<td>220.50 (81.53)</td>
</tr>
<tr>
<td>CD4 (no/mm³)</td>
<td>1023.91 (489.16)</td>
<td>71.96 (8.20)</td>
</tr>
<tr>
<td>CD8 (no/mm³)</td>
<td>544.69 (95.00)</td>
<td>42.56 (9.50)</td>
</tr>
<tr>
<td>CD19 (no/mm³)</td>
<td>266.87 (227.44)</td>
<td>702.21 (359.67)</td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>10.81 (5.65)</td>
<td>29.25 (8.81)</td>
</tr>
<tr>
<td>CD4CD45R+ (no/mm³)</td>
<td>406.17 (306.18)</td>
<td>1.76 (0.89)</td>
</tr>
<tr>
<td>CD4CD45R− (no/mm³)</td>
<td>16.70 (9.99)</td>
<td>26.87 (6.40)</td>
</tr>
<tr>
<td>NK (no/mm³)</td>
<td>300.45 (179.63)</td>
<td>220.50 (81.53)</td>
</tr>
</tbody>
</table>

AU = anterior uveitis, NK = natural killer cells, NS = not significant. Data shown as mean (SEM).

Figure 1 Absolute values of CD4CD45R+ cells. Patients with IAU had absolute values lower than the control group, and percentages lower than those of SA patients (p<0.001). IAU = idiopathic anterior uveitis; AU = anterior uveitis; SA = spondyloarthropathy.

Figure 2 Percentages of CD4CD45R− cells. Patients with IAU had higher percentages than the healthy subjects and SA patients (p<0.001). Abbreviations as in figure 1.
diseases. The immunological features studied included synovial and cellular, in HLA-B27+ patients without associated SA were similar to those of patients with SA, which suggest a common pathogenetic link between both forms of AU. It is possible that the long term follow up of these patients will clarify whether or not it is the same entity.

We are indebted to Ms E Velasco for assistance in the preparation of the manuscript.

FRANCISCO RIVERA-CIVICO JUAN JIMÉNEZ-ALONSO MARIA MARTIN-ARMADA MARIA TERESA HERRANZ JOSÉ CASTRO FRANCISCO PÉREZ-ALVAREZ J L DEL ARBOL Service of Internal Medicine

FRANCISCO SAMANIEGO Service of Clinical Chemistry and Immunology, "Virgen de las Nieves" University Hospital, Granada, Spain

Correspondence to: Dr J Jiménez-Alonso, Jefe del Servicio de Mdicina Interna, Hospital General de Especialidades "Virgen de las Nieves" Avda Fuerzas Armadas 2, 18014 Granada, Spain.

1 Herranz-Marín MT, Jiménez-Alonso J, Delgado-Rodríguez M, Omar M, Rivera-Civico F, Martin-Armada M, et al. Marcadores clonohimoligicos de uveitis secundaria: resulta-

2 Rothova A, Buitenhuys HJ, Meenen C, Brink-

4 Brewerton DA, Ca-

7 Linssen A, Blij LE, Dandrieu MR, Chrisma-

8 Becknings AB, Davies J, Gibson JM, Rasenhal AR. Acute anterior uveitis, ankylos-

9 Rothova A, van Veenendaal WG, Linsen A, Gla-

10 Rosenbaum JT. Characterization of uveitis asso-

11 Molder P, Vinge O, Olsen BG. HLA B27, sacro-
ilitis and peripheral arthropathy in acute ante-

MATTERS ARISING

RS3PE: six years later

We read with interest the paper by Cantini et al and would like to comment on it.1

In 1992 we performed a retrospective mul-
ticentre study of 27 RS3PE patients. We con-
duced that personal history of polyalgia rheumatica (two patients), presence of ero-
sions (one patient) and evolution to haematolo-
gical disorders (two patients concomitantly developed a T lymphoma and one a my-
elodiplastic syndrome) suggested that RS3PE syndrome might not be a distinct clinical entity. At that moment 12 patients were asymptomatic and 12 required treatment. This was reported elsewhere.2

Now, six years later, we have reviewed the original cohort of patients with the RS3PE syndrome. A questionnaire was sent to the participating rheumatologists. The survey focused on articular symptoms, treatment and evolution. The current cohort was composed of 22 patients (16 male; female 6; mean age:77.9; range 64-91). Four patients died (the three with haematological diseases, one stroke) and one was not located. Thirteen patients were asymptomatic and without treat-
ment, in contrast nine required treatment, namely corticosteroids (6), gold salts (1), clo-\naur's phenomena, both hands had sclero-
dactyly. A nailfold capillary microscopy showed a decreased number of capillary loops, which were widened, suggesting sys-
temic sclerosis.

Our results suggests that RS3PE syndrome has a good prognosis being more than half of the patients are asymptomatic and without treat-
ment six years later. However, there is a sub-
set of patients that have other diseases. Although pure RS3PE syndrome does exist the evolution should be carefully monitored.

MONICA GUMÁ ENRIQUE CASADO XAVIER TENA ALEX OLIVE Rheumatology Section, Hospital Universitario Germans Trias i Pujol, C/ de Canyot s/n, Badalona 08016, Spain

Correspondence to: Dr A Olivé.

Authors’ reply

We appreciate the comment by Olivé et al on our article on RS3PE. They reviewed 27 pre-
viously described RS3PE patients after a fol-
low up of six years. As we suggested in a previous report, they confirm that RS3PE syndrome should be considered a heterogeneous condition associ-
ated with different inflammatory rheumatic diseases and also with neoplastic disorders.

In our study none of the 23 patients with RS3PE syndrome developed clinical manifes-
tations supporting the diagnosis for another disease. The different study design and selec-
tion of patients may in part explain the subset of patients with other diseases and with a worse prognosis observed by Olivé et al.

We designed a prospective follow up study excluding patients satisfying the criteria for the diagnosis of polyalgia rheumatica, rheumatoid arthritis and seronegative spondylarthropathies. Moreover, patients with a clinical history of cancer were excluded from the study. In their original report3 these authors performed a retrospective study including all patients with remit-
ting distal extremity swelling with pitting oedema. They recruited also patients not evaluated for spondylarthropathies, which may be associated with distal extremity swell-
ing with pitting oedema.4

However, in their retrospective evaluation Olivé et al found that 13 of 22 (59%) patients were asymptomatic and drug free over a six year follow up period, confirming that RS3PE not associated with other conditions and with a good prognosis does exist.

The problem is how to label this clinical picture. As discussed in our article,5 the simi-
larities of demographic, clinical and MRI findings between patients with “pure” RS3PE syndrome and those with polyalgia rheumatica and the concurrence of the two syndromes suggest that these conditions may be part of the clinical spectrum of the same disease. In the series of Olivé et al the patient with a clinical course characterised by alternative relapses of HLA-B27 associated oedema or polyalgia symptoms further supports our hypothesis. Even those RS3PE patients successively diagnosed as having seronegative rheumatoid arthritis (elderly onset rheumatoid arthritis) do not conflict with our conclusions. Healey described pa-
tients who developed episodes of polyalgia rheumatica and seronegative rheumatoid arthritis at different times during follow up.6

Similar clinical characteristics have been recently described in a population based cohort of patients with giant cell arteritis fol-
lowed up over a 42 year period. Four of the six patients who fulfilled the criteria for the diagnosis of rheumatoid arthritis during the follow up experienced multiple separate episodes of symmetrical arthritides, proximal symptoms of polyalgia rheumatica and distal extremity swelling with pitting oedema.7

Authors’ reply

FABRIZIO CANTINI
2nd Divisione di Medicina, Ospedale di Pistoia, Italy

CARLO SALVARANI
Servizio di Reumatologia, Azienda Ospedaliera, Asipedeale S Maria Nuova, Reggio Emilia, Italy

IGNAZIO OLIVIERI
Servizio di Reumatologia, Ospedale S Carlo, Potenza, Italy
Correspondence to: D. Cantini, 2nd Divizione di Medicina, Ospedale di Prato, Piazza Ospedale 1, 59100 Prato, Italy.

Crystals in arthritis: new age nonsense or novel therapeutic target?

Apatite crystals are present in up to 70% of fluids from degenerated joints. Their presence correlates strongly with radiographic evidence of cartilage degeneration and is associated with larger joint effusions when compared with joints without crystals. 1 Whether the presence of apatite crystals is a cause of cartilage damage or an effect of cartilage damage is unclear. Several lines of evidence suggest that apatite crystals cause joint destruction. For example, apatite crystals induce both mitogen-activated protein kinase (MAPK) and progestational synthesis in synovial fibroblasts and chondrocytes in vitro. They also induce matrix metalloproteinase (MMP) synthesis and secretion, thus promoting tissue damage. 2 The cellular mechanisms whereby apatite crystals induce such responses are currently under investigation. Like many other growth promoting agents, apatite crystals induce a variety of transcription factors such as growth promoting agents, apatite crystals induce mitogen-activated protein kinase (MAPK) and protein kinase C (PKC). 3 Furthermore, such activation is specific as the crystals do not activate protein tyrosine kinases (PTK) or phosphatidylinositol 3-kineses (PI3K).

When the crystals were present simply as a consequence of joint destruction, we would expect them to be present in other arthropathies characterised by cartilage dissolution and synovial lining proliferation such as rheumatoid arthritis (RA). However, apatite crystals are rarely found in RA joint fluids. 4 Thus, current data support the presence of a pathology of apatite crystals. On the other hand, the clinical significance of apatite crystals in joint degeneration continues to be questioned. Dieppe and Swan doubt that apatite crystals are of pathogenic importance, but they fail to refute the view even the vast body of literature that supports the biological activity of apatite crystals. 5 To add to the confusion, they place apatite in a list of pathogenic crystals in the same splay as pyrophosphate, but fail to explain why the importance of balance in the presentation of scientific papers has recently been emphasised.

As noted by Dieppe and Swan, part of the problem is that apatite cannot be readily identified in the same way that monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) can be by polarised light microscopy. Furthermore, the presence of apatite crystals does not change the management of either osteoarthritis (OA) or any other arthropathy in patients at present. However, some workers conclude that therefore apatite crystals are irrelevant to clinical practice. Historically, the role of cytokines in the pathogenesis of OA was also considered to be speculative. 6 As with apatite crystals, levels of interleukin 1 (IL1) or tumour necrosis factor α (TNFα) are not routinely measured in joint fluid from patients with arthritis. After considerable further investigation, however, the roles of IL1 and TNFα in synovial joint damage and joint destruction in OA are now considered important. 7 As a consequence of such recognition, Pelletier and coworkers have prevented the development of OA in an experimental model by transfer of the IL1 receptor antagonist gene. 8 We have shown that apatite crystals induce MMP-1 in human OA (HOA) fibroblasts with a potency equivalent to that of IL1 and TNFα in vitro. Furthermore, apatite crystals IL1 and TNFα act in synergy to increase MMP-1 production by HOA fibroblasts. 9 Efforts continue to develop methods to inhibit the pathogenic effects of IL1 and TNFα. Why not inhibit the effects of apatite crystals as well?

Currently, there is no drug available to retard the progression of OA. A greater understanding of the pathogenesis of OA is essential to the development of rational treatment thus allowing us to target important pathogenic mediators. While it might be tempting to write apatite crystals off as new age nonsense, a considerable body of evidence suggests, like cytokines, they could serve as a novel therapeutic target as well as a prognostic marker. Without further study, only those with crystal balls can tell.

Author’s reply

We agree with all the points made by Dr McCarthy. Basic calcium phosphates (BCPs) in synovial fluids may be important, and it may be that their identification will be valuable in relation to future treatments. However, she seems to agree with the only two points made about BCPs in our article (which is about the identification of urate and pyrophosphate crystals): that is, that on the basis of current understanding, basic calcium phosphates are a “doubtful significance”, and that their identification should have no influence on contemporary therapeutic decisions.

Paul Dieppe

MRC Health Services Research Collaboration, University of Bristol, Bristol

Mortality in rheumatoid arthritis patients

The paper “Mortality in rheumatoid arthritis patients with disease onset in the 1980s” is of considerable interest. A decrease in mortality risk for rheumatoid arthritis (RA) patients in more recent years would be important, as only in the first 10 years of RA. However, this inclusion cohort differs from those previously published so that no direct comparison is possible. As earlier (and older and larger) studies have shown standardised mortality ratios of two to three, a finding of “normal” mortality might imply that more recently used treatment strategies are reversing the excessive mortality in RA previously observed.

Yet, even at first perusal, there are a lot of deaths in this series of relatively young people. In the 10 years after a mean age of 51, 18 patients (10%) had died. Over 20 deaths were said to be unexpected. However, using US mortality rates for a population aged the same, projected over 10 years, two thirds women, and white, one would expect only 11 deaths using 1996 mortality rates and 12 deaths using 1985 rates, over the 1710 patients years of follow up. While we did not have the age distribution of this RA cohort to calculate precise expectations, these figures should be conservative. Female mortality rates in the US white female popula-
tion, at 3.4 per 1000 per year at age 51 and 9.0 per 1000 per year at age 61 are presumably higher than those in long lived Malmöhus County, Sweden.

Of interest, in our own larger study with meticulously computed “expected” values in four different populations we also had an “expected” death rate of about 10% to 15% over 10 years. But, these were not inception cohorts and their age at start of follow up was 60.4, 62.6, 59.8, and 69.1 years. Thus, they were much older cohorts. Given the expected doubling of mortality rates each eight years (Gompertz’s law), expected deaths should have been two to three times more in our cohorts than in a cohort beginning at age 51.

Finally, recent studies have not suggested that “rheumatoid” deaths in themselves are the cause of the increased mortality in RA. The observed “excess” deaths are spread around in multiple disease categories, with accelerated atherosclerosis numerically the largest problem and only a slight relative increase in systemic RA complications, gastrointestinal haemorrhage, and infections.

JAMES F FRIES
Stanford University, School of Medicine, Palo Alto, California, USA

Authors’ reply

We were pleased to notice the interest in our paper shown by Drs Fries and Bloch. In reply to their comments we do not consider the death rate of 10% in the cohort as an excessive one compared with the age and sex matched general population. It is not possible to calculate more precise figures of expected deaths knowing the mean age of the cohort only. To clarify this and make comparison possible we enclose a table of the age distribution in our cohort in five year intervals giving the number of observed and expected deaths for each age interval separately.

Women do live longer in Malmöhus County, Sweden than in the US. Female mortality rates in Malmöhus County were 3.76 per 1000 at age 51 and 7.32 per 1000 at age 61 in 1985. In 1996 the corresponding figures were 2.03 per 1000 at age 51 and 3.39 per 1000 at age 61.

We agree that the main cause of death in RA patients very seldom is the rheumatoid disease in itself. This was true also for our study where no certain connection between RA and death was found in any of the cases.

ELISABET LINDQVIST
KERSTIN EBERHARDT
Department of Rheumatology, Lund University Hospital, Sweden

Table 1

<table>
<thead>
<tr>
<th>Age group</th>
<th>Number of patients</th>
<th>Expected mortality</th>
<th>Observed mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-19</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20-24</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25-29</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30-34</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35-39</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40-44</td>
<td>20</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>45-49</td>
<td>27</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>50-54</td>
<td>34</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>55-59</td>
<td>24</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>60-64</td>
<td>19</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>65-69</td>
<td>16</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>70-74</td>
<td>11</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>75-79</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>183</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>
HLA-B27+ anterior uveitis with or without associated spondyloarthritis: clinical and immunological features
FRANCISCO RIVERA-CÍVICO, JUAN JIMÉNEZ-ALONSO, MARÍA MARTÍN-ARMADA, MARÍA TERESA HERRANZ, JOSÉ CASTRO, FRANCISCO PÉREZ-ALVAREZ, J L DEL ARBOL, MANUEL TORIBIO and FRANCISCO SAMANIEGO

Ann Rheum Dis 1999 58: 721-722
doi: 10.1136/ard.58.11.721

Updated information and services can be found at:
http://ard.bmj.com/content/58/11/721

These include:

References
This article cites 15 articles, 3 of which you can access for free at:
http://ard.bmj.com/content/58/11/721#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/