A man with intermittent fever and arthralgia

Susan M Knight, Deborah P M Symmons

Case report
A 44 year old, previously healthy, white man, who was a milk depot manager, was referred to a general physician in November 1991 with a 16 month history of febrile episodes, lasting for three or four days, which recurred approximately every six weeks. During the episodes his temperature rose to 40°C. He felt flu-like and had aching limbs and profuse night sweats. He had no other symptoms of note and in particular no rash, no weight loss, no joint swelling, and no gastrointestinal or genitourinary symptoms. There was a family history of thyroid disease. He smoked 15–20 cigarettes a day. He had been on holiday to Tunisia in 1987, the Greek islands in 1990 and Portugal in 1991. He weighed 81.2 kg. No abnormalities were found on examination. Initial investigations focused on screening for infection. Full blood count, erythrocyte sedimentation rate, renal function, liver function, thyroid function, chest radiography, and computed tomography of the abdomen were normal. Blood cultures were negative, as were a Mantoux test and early morning urine analysis for tuberculosis. He also had negative serology for syphilis, brucella, toxoplasma, and leptospirosis.

In May 1992 the febrile episodes became more frequent and he was referred for a second opinion to an infectious diseases unit. The differential diagnosis included an occult infection and a connective disease. An infection screen was again negative. Rheumatoid factor, anti-nuclear antibodies, and ds-DNA antibodies were negative and immunoglobulin concentrations were normal. It was suggested that he might have adult onset Still’s disease. Table 1 shows the indications and the results of his investigations.

The working diagnosis remained adult onset Still’s disease and he was treated with indomethacin. In April 1993 he was given prednisolone 10 mg daily because his joint symptoms were becoming more prominent, and he had some pleuritic chest pain although he still had no documented synovitis. Three months later his symptoms were no better and methotrexate was added. By September 1993 his fevers had largely settled but he began to complain of back pain. His modified Schober’s index was 6 cm.

By July 1994 he had begun to experience joint swelling as well as pain. He had documented synovitis of a number of small joints including the right wrist. There were no other new symptoms. He was taking prednisolone 5 mg when he experienced fevers) and methotrexate 12.5 mg weekly. His erythrocyte sedimentation rate was 56 mm 1st h. In October 1994 he lost his job and subsequently became depressed, requiring treatment with dothiepin.

During 1995 he was referred to another rheumatologist in a nearby town for a further opinion but the diagnosis was not changed. He was then referred back to the original hospital for follow up in the newly established rheumatology department. He had synovitis of several joints including the right wrist. There were no other new symptoms. He was taking prednisolone 10 mg daily because his joint symptoms were becoming more prominent, and he had some pleuritic chest pain although he still had no documented synovitis. Three months later his symptoms were no better and methotrexate was added. By September 1993 his fevers had largely settled but he began to complain of back pain. His modified Schober’s index was 6 cm.

By July 1994 he had begun to experience joint swelling as well as pain. He had documented synovitis of a number of small joints including the right wrist. There were no other new symptoms. He was taking prednisolone 5 mg when he experienced fevers) and methotrexate 12.5 mg weekly. His erythrocyte sedimentation rate was 56 mm 1st h. In October 1994 he lost his job and subsequently became depressed, requiring treatment with dothiepin.

During 1995 he was referred to another rheumatologist in a nearby town for a further opinion but the diagnosis was not changed. He was then referred back to the original hospital for follow up in the newly established rheumatology department. He had synovitis of several joints including the right wrist. There were no other new symptoms. He was taking prednisolone 5 mg when he experienced fevers) and methotrexate 12.5 mg weekly. His erythrocyte sedimentation rate was 56 mm 1st h. In October 1994 he lost his job and subsequently became depressed, requiring treatment with dothiepin.
peripheral joints. At this point he remained rheumatoid factor negative, had no radiological erosions or sacroilitis. He was HLA-B27 negative. The differential diagnosis included undifferentiated seronegative spondarthritis and adult onset Still’s disease. Follow up was continued.

In January 1997 his weight was 82.6 kg. In April 1997 he had an abrupt onset of watery diarrhoea with a stool frequency of up to 10 times per 24 hours. This was associated with gripping lower abdominal pain especially after meals. There was no blood or mucus in the stools. His weight fell rapidly to 73.0 kg within four weeks of onset. Differential diagnosis included intestinal infection, inflammatory bowel disease, and malignant disease. Stool cultures were negative. Barium enema was normal and flexible sigmoidoscopy showed only diffuse mild erythema. Barium follow through showed appearances consistent with malabsorption with a slow rate of passage through the small bowel, some dilatation of the small bowel, straightening of the valvulae coniventes, and moulage. A duodenal biopsy was performed to look for the organisms of Whipple’s disease. It showed large macrophages in the lamina propria, the cytoplasm of which contained large amounts of diastase resistant PAS positive material. Bacterial rods characteristic of Whipple’s disease were seen on electron microscopy (fig 1). Because Whipple’s disease can affect the central nervous system, baseline magnetic resonance imaging of the brain was performed. It was normal. By the time the diagnosis of Whipple’s disease was confirmed in early July 1997 his weight had fallen to 62.6 kg. His methotrexate was stopped and he was given high dose co-trimoxazole. Within three days his diarrhoea had stopped. By December 1997 his weight had returned to 78.7 kg and he had no peripheral synovitis. His depression had resolved. He did however have increasing lower back pain and his Schober had fallen to 4.7 cm. His sacroiliac radiographs were normal.

Discussion
From the rheumatological perspective, it is easy to think of and diagnose Whipple’s disease once a patient with a migratory seronegative arthritis develops severe diarrhoea and weight loss. The main question raised by this case is whether the diagnosis should have been considered, or could have been made, sooner. Recent advances in the understanding of the aetiology of Whipple’s disease make it timely to review this issue.

DIFFERENTIAL DIAGNOSIS
George Whipple first described this condition in 1907.1 His patient was a 36 year old male physician who developed an intermittent, migratory polyarthritis while working as a medical missionary in Constantinople. One year later he developed a chronic cough. Seven years after the onset he began to have evening fevers and then developed diarrhoea and weight loss. He died five months after this.

The condition is rare. In 1985 Dobbins estimated that there had been 2000 cases since the original description in 1907.2 The great majority have been middle aged white men from the US and Europe. The disease seems to be more common in farmers and people in farm related trades.1 Our patient worked in a milk depot. The causal organism has recently been identified as a Gram positive actinomycete, which has been named *Tropheryma whippelii* from the Greek trophi (nourishment) and eryma (barrier) because of the malabsorption syndrome it causes.4 The actinomycetes are a diverse group of bacteria most of which are aerobic soil organisms—which may account for the link with farming.

The clinical manifestations of Whipple’s disease are many and diverse. Almost all organ systems can be involved. Table 2 lists the more commonly reported features. In approximately two thirds of patients, the disease begins insidiously with either arthralgia or a migratory, non-erosive, non-deforming seronegative arthritis. This may precede any other features by up to 24 years.5-6 Clearly the differential diagnosis depends on what other clinical features are present. In our patient, fever was the most prominent symptom apart from arthralgia. This led an infectious disease consultant, a professor of medicine, and two rheumatologists to the conclusion that, once

Figure 1 Electron micrograph of a duodenal biopsy of the patient showing bacterial rods characteristic of Whipple’s disease.
infection had been excluded, adult onset Still’s disease was the most likely diagnosis. But, of course, infection had not been excluded!

The differential diagnosis between adult onset Still’s disease and Whipple’s disease has not received much attention in the medical literature. This is rather surprising as the fever of Whipple’s disease occurs most commonly in patients who also have arthritis.\(^\text{3}\) Table 3 shows a comparison of the epidemiological and clinical features of the two diseases. If a patient has fever and arthritis (but no diarrhoea) then the most important distinguishing features are the presence of a characteristic salmon-pink exan
tensive rash in most patients with adult onset Still’s disease as well as a marked neutrophilia. There are no widely accepted diagnostic or classification criteria for adult onset Still’s disease. Some authors have used the EULAR or ACR criteria for systemic onset juvenile arthritis (which require an arthritis to be present for three months or six weeks respectively, plus daily intermittent temperature increases to 39.5°C or more). Our patient would have satisfied these criteria by July 1994 when he first had documented synovitis. An alternative set of criteria was proposed by Cush et al\(^{10}\) (table 4) and these are likely to be more specific. Although our patient satisfied the four manda
tory criteria, he only had one of the additional criteria (serositis). However, both serositis and reticuloendothelial involvement occur in Whipple’s disease and so a patient with Whipple’s could satisfy the Cush criteria.

Table 3 shows a comparison of the epidemiological and clinical features of the two diseases. If a patient has fever and arthritis (but no diarrhoea) then the most important distinguishing features are the presence of a characteristic salmon-pink exan
tensive rash in most patients with adult onset Still’s disease as well as a marked neutrophilia. There are no widely accepted diagnostic or classification criteria for adult onset Still’s disease. Some authors have used the EULAR or ACR criteria for systemic onset juvenile arthritis (which require an arthritis to be present for three months or six weeks respectively, plus daily intermittent temperature increases to 39.5°C or more). Our patient would have satisfied these criteria by July 1994 when he first had documented synovitis. An alternative set of criteria was proposed by Cush et al\(^{10}\) (table 4) and these are likely to be more specific. Although our patient satisfied the four manda
tory criteria, he only had one of the additional criteria (serositis). However, both serositis and reticuloendothelial involvement occur in Whipple’s disease and so a patient with Whipple’s could satisfy the Cush criteria.

Table 3: Comparison between Whipple’s disease and adult onset Still’s disease

<table>
<thead>
<tr>
<th>Feature</th>
<th>Whipple’s disease (adapted from(^\text{8}))</th>
<th>Adult Still’s disease (adapted from(^\text{3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
<td>Rare</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Male:female</td>
<td>8:1</td>
<td>1:1</td>
</tr>
<tr>
<td>Peak age at onset</td>
<td>30–60</td>
<td>16–35</td>
</tr>
<tr>
<td>Mean age at onset</td>
<td>49</td>
<td>30</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Predominantly white</td>
<td>Worldwide</td>
</tr>
<tr>
<td>Clinical features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>10–55%</td>
<td>96%</td>
</tr>
<tr>
<td>Type</td>
<td>Usually low grade, intermittent</td>
<td>Usually high spiking once or twice a day</td>
</tr>
<tr>
<td>Arthritis</td>
<td>>80%</td>
<td>100%</td>
</tr>
<tr>
<td>Joints</td>
<td>Often transient</td>
<td>Usually persistent or in episodes of >2 weeks</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>>80%</td>
<td>100%</td>
</tr>
<tr>
<td>Radiology</td>
<td>Large > small joints</td>
<td>Large > small joints</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight loss</td>
<td>>10%</td>
<td>>10%</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Hepatosplenomegaly</td>
<td>15%</td>
<td>48%</td>
</tr>
<tr>
<td>Rash</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Adenopathy</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Neutrophilia (15 000)</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

*Common (more than 50% of cases in most series).
tests could demonstrate *T. whippelii* in tissues that showed no evidence of disease histologically. Ramzan *et al* looked at 30 patients with histologically confirmed Whipple’s disease and eight in whom the disease was suspected but could not be confirmed. Results from tissues were positive in 29 of 30 patients with confirmed Whipple’s disease and seven of eight of those suspected to have the disease. On biopsies taken after treatment, results from PCR were found to be better than conventional histology at predicting relapse. *T. whippelii* has also been identified in peripheral blood and pleural effusion cells. Clearly it would be a major advance if Whipple’s disease could be diagnosed by PCR techniques on peripheral blood mononuclear cells, before the onset of intestinal symptoms. Unfortunately, this does not seem to be a sufficiently sensitive test. Müller *et al* obtained positive results from peripheral blood on two out of four confirmed cases of Whipple’s disease. They concluded that the blood test could not be used as a substitute for biopsy.

TREATMENT

The final aspect to consider in this case is the treatment. Before the introduction of antibiotic regimens in 1952, diagnosed Whipple’s disease was universally fatal. A variety of antibiotic regimens are suggested and none is universally successful. Patients often relapse, even after prolonged courses of antibiotics, and the relapses often involve the central nervous system and may be progressive. It was with this in mind, that baseline magnetic resonance imaging of the brain was performed in this patient. There is evidence that co-trimoxazole penetrates the blood brain barrier better than other antibiotics and so reduces the risk of CNS relapses. In the majority of patients the diarrhoea ceases within 2–7 days of starting antibiotics and the joint pain within a month. Treatment has to be continued for at least a year. The disease is too rare to conduct randomised controlled clinical trials.

A man with intermittent fever and arthralgia

Susan M Knight and Deborah P M Symmons

Ann Rheum Dis 1998 57: 711-714
doi: 10.1136/ard.57.12.711

Updated information and services can be found at:
http://ard.bmj.com/content/57/12/711

These include:

References
This article cites 17 articles, 2 of which you can access for free at:
http://ard.bmj.com/content/57/12/711#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Degenerative joint disease (4641)
- Musculoskeletal syndromes (4951)
- Pain (neurology) (883)
- Connective tissue disease (4253)
- Immunology (including allergy) (5144)
- Rheumatoid arthritis (3258)
- Clinical diagnostic tests (1282)
- Epidemiology (1367)
- Inflammatory bowel disease (73)
- Radiology (1113)
- Radiology (diagnostics) (750)
- Travel medicine (36)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/