Primary Sjögren’s syndrome and aplastic anaemia

Primary Sjögren’s syndrome (SS) is an autoimmune disease characterised by the presence of xerostomia and xerophthalmia without evidence of another systemic autoimmune disease. It has a wide clinical spectrum, extending from exocrinopathy to systemic autoimmune disease and to B cell lymphoma. The association of SS with aplastic anaemia (AA) has rarely been reported and only in patients with lymphoma. We report here an exceptional case of primary SS and severe AA without lymphoma who had cytogenetic and immunological abnormalities, which might give clues to the pathogenesis of AA.

A 28 year old white man was referred in February 1990 for lymphadenopathies and pancytopenia. He complained of xerostomia and ocular burning. Xeroderma was confirmed by an abnormal Schirmer’s test (right and ocular burning). Xerophthalmia was observed 33 patients with CT in a group of 206 consecutive FM patients (16%), and

This study was supported in part by a grant from Schering AG (Lyon, France)

Primary Sjögren’s syndrome (SS) is an autoimmune disease characterised by the presence of xerostomia and xerophthalmia without evidence of another systemic autoimmune disease. It has a wide clinical spectrum, extending from exocrinopathy to systemic autoimmune disease and to B cell lymphoma. The association of SS with aplastic anaemia (AA) has rarely been reported and only in patients with lymphoma. We report here an exceptional case of primary SS and severe AA without lymphoma who had cytogenetic and immunological abnormalities, which might give clues to the pathogenesis of AA.

A 28 year old white man was referred in February 1990 for lymphadenopathies and pancytopenia. He complained of xerostomia and ocular burning. Xeroderma was confirmed by an abnormal Schirmer’s test (right and ocular burning). Xerophthalmia was observed 33 patients with CT in a group of 206 consecutive FM patients (16%), and

This study was supported in part by a grant from Schering AG (Lyon, France)

Primary Sjögren’s syndrome (SS) is an autoimmune disease characterised by the presence of xerostomia and xerophthalmia without evidence of another systemic autoimmune disease. It has a wide clinical spectrum, extending from exocrinopathy to systemic autoimmune disease and to B cell lymphoma. The association of SS with aplastic anaemia (AA) has rarely been reported and only in patients with lymphoma. We report here an exceptional case of primary SS and severe AA without lymphoma who had cytogenetic and immunological abnormalities, which might give clues to the pathogenesis of AA.

A 28 year old white man was referred in February 1990 for lymphadenopathies and pancytopenia. He complained of xerostomia and ocular burning. Xeroderma was confirmed by an abnormal Schirmer’s test (right and ocular burning). Xerophthalmia was observed 33 patients with CT in a group of 206 consecutive FM patients (16%), and

This study was supported in part by a grant from Schering AG (Lyon, France)

Primary Sjögren’s syndrome (SS) is an autoimmune disease characterised by the presence of xerostomia and xerophthalmia without evidence of another systemic autoimmune disease. It has a wide clinical spectrum, extending from exocrinopathy to systemic autoimmune disease and to B cell lymphoma. The association of SS with aplastic anaemia (AA) has rarely been reported and only in patients with lymphoma. We report here an exceptional case of primary SS and severe AA without lymphoma who had cytogenetic and immunological abnormalities, which might give clues to the pathogenesis of AA.

A 28 year old white man was referred in February 1990 for lymphadenopathies and pancytopenia. He complained of xerostomia and ocular burning. Xeroderma was confirmed by an abnormal Schirmer’s test (right and ocular burning). Xerophthalmia was observed 33 patients with CT in a group of 206 consecutive FM patients (16%), and

This study was supported in part by a grant from Schering AG (Lyon, France)

Primary Sjögren’s syndrome (SS) is an autoimmune disease characterised by the presence of xerostomia and xerophthalmia without evidence of another systemic autoimmune disease. It has a wide clinical spectrum, extending from exocrinopathy to systemic autoimmune disease and to B cell lymphoma. The association of SS with aplastic anaemia (AA) has rarely been reported and only in patients with lymphoma. We report here an exceptional case of primary SS and severe AA without lymphoma who had cytogenetic and immunological abnormalities, which might give clues to the pathogenesis of AA.

A 28 year old white man was referred in February 1990 for lymphadenopathies and pancytopenia. He complained of xerostomia and ocular burning. Xeroderma was confirmed by an abnormal Schirmer’s test (right and ocular burning). Xerophthalmia was observed 33 patients with CT in a group of 206 consecutive FM patients (16%), and

This study was supported in part by a grant from Schering AG (Lyon, France)
they suggest that this 16% means that underlying mechanisms may be common for CTS and FM.

We cannot agree with this suggestion. Our study was not controlled, but no statistically significant differences could be appreciated in the prevalence of CTS in FM patients (35.4% of 291) versus the general population (35.4% of 191) from our series with that in the general population. Patients reported by de Krom et al. (35 of 340) on the other hand, we noticed that CTS had been overlooked in 27 of 191 (14.1%) women with FM in their series despite mean duration of CTS symptoms of 8.1 years (range 6 months to 15 years) while only 23 of 340 (6.7%) women with CTS did not have a previous diagnosis of CTS in the series of de Krom et al.

Both studies are probably biased. In our study, patients with FM and CTS would complain about more severe symptoms and were referred to a rheumatology unit, and thus CTS prevalence could be overestimated in this sample. As pain and paresthesia in the hands are common complaints in patients with FM, CTS was overlooked before rheumatological consultation. Recently, we have conducted two studies that may highlight these points: firstly, we have observed that patients referred for rheumatological consultation often have multiple diagnosis at discharge (38%) that explain the musculoskeletal symptoms of the patient. Patients with both CTS and FM had never had a diagnostic suspicion of both diseases previous to rheumatological consultation. In another study of the clinical characteristics of 173 women with idiopathic CTS (diagnosis was based on neurophysiological studies in all cases), CTS was commonly bilateral and severe, and most patients had been referred with a diagnosis of 'arthritis'. Again, the prevalence of FM and CTS was high (19%) and patients with FM had significantly more severe CTS than patients without FM. Presence of associated musculoskeletal conditions in one of the patients or bilateral CTS involvement seem to act as confounding symptoms for correct diagnosis before rheumatological consultation.

In the study of Cimmino et al., CTS was commonly bilateral and severe, and most patients had been referred with a diagnosis of 'arthritis'. Again, the prevalence of FM and CTS was high (19%) and patients with FM had significantly more severe CTS than patients without FM. Presence of associated musculoskeletal conditions in one of the patients or bilateral CTS involvement seem to act as confounding symptoms for correct diagnosis before rheumatological consultation.

In conclusion, at the present time, it cannot be stated that CTS is more frequent in patients with FM than in the general population, and common pathogenic mechanisms should not be proposed. Nevertheless, it is clear that CTS is often overlooked or misdiagnosed in patients showing atypical symptoms, such as bilateral severe CTS, or associated FM before rheumatological consultation. In addition, we feel that rheumatologists should be alert to the possibility of associated CTS and FM, which is probably more frequent in patients referred to rheumatology units than the 2.4% previously reported in a retrospective series.

Authors’ reply

Perez-Ruiz and colleagues raise several interesting points on the relation between fibromyalgia (FM) and idiopathic CTS (diagnosis was based on neurophysiological studies in all cases), CTS was commonly bilateral and severe, and most patients had been referred with a diagnosis of ‘arthritis’. Again, the prevalence of FM and CTS was high (19%) and patients with FM had significantly more severe CTS than patients without FM. Presence of associated musculoskeletal conditions in one of the patients or bilateral CTS involvement seem to act as confounding symptoms for correct diagnosis before rheumatological consultation.

In the study of Cimmino et al., 2440 of 4456 (54%) of the subjects returned the questionnaire, 182 of 2440 (7.2%) met criteria for clinical examination, and 93 of 182 (51.1%) agreed to be visited. One would expect that patients with both conditions would be more likely to answer the questionnaire and accept consultation.

In conclusion, at the present time, it cannot be stated that CTS is more frequent in patients with FM than in the general population, and common pathogenic mechanisms should not be proposed. Nevertheless, it is clear that CTS is often overlooked or misdiagnosed in patients showing atypical symptoms, such as bilateral severe CTS, or associated FM before rheumatological consultation. In addition, we feel that rheumatologists should be alert to the possibility of associated CTS and FM, which is probably more frequent in patients referred to rheumatology units than the 2.4% previously reported in a retrospective series.

Measurement of IgA-α1-antitrypsin complex in rheumatoid arthritis: A question of specificity?

We feel we should comment on a recent article by Iwana et al. on the clinical value of measuring circulating IgA-α1-antitrypsin (IgA-AT) complex concentrations in patients with rheumatoid arthritis (RA) using a prototype ELISA kit. We are concerned about the specificity of the monoclonal antibody used as the capture antibody on their ELISA plates. The authors say that the antibody recognises specific epitopes on the IgA-AT complex. However no direct proof of this is provided here or in previous reports where this particular antibody has been used.**1** Recently, in response to another study using this assay we provided data to show that the antibody recognises the complement regulatory protein, factor H.**2**

We have shown that replacing the ‘complex specific’ antibody with other monoclonal antibodies to factor H (OX23 and OX24) in the ELISA essentially makes no difference to measurement of ‘complex’ values. We have also shown that the ‘IgA-AT’ antibody recognises a different epitope on factor H to that recognised by OX23 and OX24, and feel that it would be surprising if monoclonals directed against three different regions of the factor H all showed cross reactivity with IgA-AT.

Our studies pose the question as to what is actually being measured in the IgA-AT ELISA. The specificity of the complex antibody for factor H might suggest that some form of factor H-IgA complex is being measured. However, a crucial factor in the use of this particular ELISA is the lack of any blocking step (for example, with bovine
serum albumin or gelatin) between antibody coating and addition of standards and samples. This may allow IgA (and other serum proteins) to bind non-specifically to free binding sites on the plate. We have run exactly the same ELISA using a blocking step with serum albumin. We have run more additional samples and found that this obliterates most of the binding of the standards and the samples. This suggests that the monoclonal antibody on the plate is irrelevant and that most of the IgA detected by the secondary antibody is bound to unblocked sites. Clearly the IgA would have to compete with other serum proteins for these binding sites. Thus, the assay seems to be measuring the ratio of IgA and IgA associated proteins to all other serum proteins. If this is the case then their results are not that surprising as a number of studies have shown IgA values to be increased in RA patients.

We have recently developed a new assay for measuring IgA-AT complexes based on a sandwich ELISA with a monoclonal antibody to α1-antitrypsin as the capture antibody and a secondary antihuman IgA peroxidase antibody for detection of the complexes. Using this assay we have shown that IgA-AT complexes are significantly higher in the serum of RA patients than in those with reactive arthritis. In addition we have shown that serum concentrations are higher than synovial fluid concentrations in both RA and ReA, suggesting that such complexes are produced systemically rather than locally within the joint. We were unable to find any association with the concentrations of acute phase reactants and no association with joint inflammation in itself.

IgA-AT complex values may be useful for monitoring the effectiveness of second line drugs because values have been shown to fall during treatment with D-penicillamine, gold, and sulphasalazine. However these studies used a two dimensional immunoelectrophoresis method unsuitable for screening large numbers of specimens. An ELISA method is clearly more desirable but one needs to be confident that it is only IgA-AT complex values that are being measured. We are doubtful whether this is the case for the assay used by Iwana et al. It would be interesting to use our assay to measure IgA-AT complex values in their RA and reactive arthritis specimens to see if similar correlations were found with the clinical findings.

Authors’ reply

We appreciate the comments of Dr D L Mattey and colleagues regarding our article.1 As the prototype kit used in our study for detecting IgA-α1-antitrypsin (IgA-AT) complex was a generous gift from Professor D R Stanworth, we were not informed about the detailed specificity of the monoclonal antibodies reacting with the specific epitopes on the IgA-AT complex. Therefore, Dr Stanworth is in a better position than ourselves to comment on this issue.

KEMIE IWANA
SHINICHI AOTSUKA
Division of Clinical Immunology, Clinical Research Institute, International Medical Centre of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162, Japan

Authors by Professor Stanworth

I should welcome an opportunity to reply to the comments of Mattey and associates as the assay in question was developed in my laboratory in Birmingham.

Since making the assay available to Professor Iwana in the National Medical Centre of Japan, we have been made aware by Dr Mattey that the anti-complex antibody used within the assay may cross react with complement factor H. This, however, does not negate the findings reported by Iwana and his associates as they used a secondary anti-IgA antibody within the assay. This antibody is specific for IgA and IgA containing complexes, and does not cross react with factor H. Indeed this assay format did not detect factor H. Moreover, the assay was checked to ensure that free IgA was not detected; thus precluding the possibility of non-specific binding to the plate as suggested by Dr Mattey.

DENIS R STANWORTH
Birmingham

Treatment with calcitonin for osteoporosis

I would like the opportunity to correct, or possibly update, a number of the facts concerning calcitonin contained in Dr Patel’s comprehensive review article on drug treatments for osteoporosis.

He states that nasal preparations of calcitonin are licensed for use in osteoporosis in ‘some European countries and Japan’, whereas in fact the nasal spray formulation of salmon calcitonin developed at Sandoz (now Novartis) is currently approved in more than 70 countries worldwide, including the USA and almost all the countries of Europe, Japan, on the other hand, has not yet granted marketing approval.

Ralph also claims that calcitonin has ‘significant’ side effects and is unlikely to gain widespread acceptance in osteoporosis, the evidence accumulated as a result of this extensive use does not bear this out. Neither the incidence nor the severity of side effects reported with the nasal spray can be described as significant, while in our experience its acceptance has been excellent – by both patients and physicians.

On the issue of cost, while I agree that calcitonin is much more expensive than standard analogues, these are not without their disadvantages in terms of side effects, half-life, potential for tachyphylaxis. Where pain is associated with bone disease, salmon calcitonin has certainly proved extremely beneficial, and pain relief in patients with established osteoporosis is an important secondary indication for the preparation of the hormone.

It is perhaps also fair to add that, purely as a treatment for osteoporosis, calcitonin is hardly more expensive than alendronate, at least in the USA.

MOISE AZRIA
R and D Division, Calcitonin Biology and Safety Group, Novartis Pharma AG, PO Box, Basle, Switzerland
paracetamol or paracetamol/codeine mixtures in the first instance, before consideration of salmon calcitonin. This, in my opinion would be good medical practice, particularly because salmon calcitonin would have to be given by a parenteral route. On the issue of cost, physicians will have to judge the suitability of drugs for osteoporosis depending on their interpretation of efficacy and local price for the individual compounds.

SANJEEV PATEL
Department of Medicine/Rheumatology, St Helier Hospital, Wrythe Lane, Carshalton, Surrey SM5 1AA

Intra-articular hyaluronic treatment for osteoarthritis

We wish to comment on the article by Stefan Lohmander in which the results of a placebo controlled study with intra-articular hyaluronan in osteoarthritis of the knee were presented.1 It was suggested that aged patients with a high disease severity might be the best ‘responders’ to such a treatment. We felt that it was worthwhile to reanalyse the data of the patients of our German multicentre study with hyaluronan to see whether this somewhat unexpected but clinically extremely important hypothesis could be supported. The results of our subgroup analysis clearly seem to indicate again that the patient sample over the age of 60 years and with a high baseline score of >10 Lequesne points is the most likely subgroup to benefit from the treatment (table 1). Stratified analyses of other methodologically comparable studies or preplanned trials in severe osteoarthritis could contribute to a validated identification of such patients who will probably respond best to an intra-articular treatment with hyaluronan in osteoarthritis of the knee.

<table>
<thead>
<tr>
<th>Evaluation time</th>
<th>Verum (n=95)</th>
<th>Control (n=100)</th>
<th>Intergroup difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verum (n=28)</td>
<td>Control (n=26)</td>
<td>Intergroup difference</td>
<td></td>
</tr>
<tr>
<td>1 week after last injection</td>
<td>3.5 2.6 0.9</td>
<td>4.6 3.2 1.4</td>
<td></td>
</tr>
<tr>
<td>Follow up after 1 month</td>
<td>3.8 2.7 1.1</td>
<td>5.7 3.3 2.4</td>
<td></td>
</tr>
<tr>
<td>Follow up after 2 months</td>
<td>4.4 2.8 1.6</td>
<td>6.5 3.6 2.9</td>
<td></td>
</tr>
</tbody>
</table>

W PUHL
PSCHARF
RKU, Oberer Eselsberg 45, 89081 Ulm, Germany

Table 1 Lequesne score (ISK) improvements (mean values)
Treatment with calcitonin for osteoporosis

MOÏSE AZRIA

Ann Rheum Dis 1997 56: 440-441
doi: 10.1136/ard.56.7.440

Updated information and services can be found at:
http://ard.bmj.com/content/56/7/440

These include:

References
This article cites 1 articles, 1 of which you can access for free at:
http://ard.bmj.com/content/56/7/440#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/