Divergent effects of methotrexate on the clonal growth of T and B lymphocytes and synovial adherent cells from patients with rheumatoid arthritis

Ayako Nakajima, Masayuki Hakoda, Hisayuki Yamanaka, Naoyuki Kamatani, Sadao Kashiwazaki

Abstract

Objective—To define the mechanisms whereby methotrexate (MTX) manifests its effects in patients with rheumatoid arthritis.

Methods—T and B cells from peripheral blood and rheumatoid synovial tissues, synovial adherent cells, and the human fibroblast cell line HT1080 and its mutant (defective in an enzyme in the nucleotide salvage pathway) were tested for clonal growth when cultured with MTX. Normal human fibroblasts and those with a deficiency in a salvage pathway were cultured with MTX in the presence or absence of purine and pyrimidine bases.

Results—Clonal growth of T and B cells, but not synovial cells, was inhibited by clinically relevant concentrations of MTX. Slowly proliferating fibroblast lines were resistant to MTX, whereas their rapidly proliferating counterparts were not. However, mutant fibroblast lines deficient in a salvage pathway were sensitive to MTX despite slow proliferation. Similarly, while skin fibroblasts were resistant to MTX, germline mutant fibroblasts deficient in a salvage pathway were sensitive to small concentrations of MTX.

Conclusion—T and B lymphocytes, but not synovial cells, may be the target of MTX in vivo. Resistance to MTX may be associated with slow proliferation and the ability to synthesise nucleotides via salvage pathways. MTX can inhibit proliferation of even slowly growing cells by restricting the supply of nucleotides obtained via a salvage pathway, by removal of purine and pyrimidine bases, or by inducing a deficiency in a salvage pathway. It may be possible to manipulate the therapeutic effect of MTX by adjusting the amounts of purines and pyrimidines available to the cells in vivo.

Many reports in the 1980s described the efficacy of a low dose weekly pulse regimen of methotrexate (MTX) for the treatment of rheumatoid arthritis (RA), and currently the long term effectiveness of MTX is widely accepted. MTX has been markedly effective in RA patients who had been unresponsive to conventional treatments, and suppressive effects of MTX on the progression of radiographic changes in RA patients have also been observed.

Various mechanisms have been proposed to account for the beneficial effects of MTX in the management of RA. MTX modulates arachidonic acid metabolism in neutrophils from patients with active RA in such a way that the synthesis, release, and retention of lipoxynene products are suppressed. MTX suppresses the proliferation of mitogen activated lymphocytes, and inhibits the formation of methyl donor S-adenosylmethionine (SAM) and pyrimidines, which are important in cell mediated immune reactions. The activity and production of interleukin-1 may be suppressed by MTX, but the serum concentrations of tumour necrosis factor α and interleukin-6 are not related to the effectiveness of MTX. MTX induces an increase in the intracellular concentration of adenosine, and this may be the mechanism for the suppression of neutrophil chemotaxis in a model of acute inflammation. Despite these various ideas, the mechanisms accounting for the positive effects of MTX in RA treatment remain unclear.

To explore this issue further at the cellular level, we cloned individual T and B cells in addition to RA synovial adherent cells, and examined the inhibitory effects of MTX on the clonal proliferation of each cell type. Clonal cultures were used in this study in order to simulate the clonal proliferation of lymphocytes in vivo after antigen stimulation. Further, as three cell types (fibroblast-like, macrophage-like, and dendritic cell-like) can be recognised in clonal cultures of synovial adherent cells, the differential effects of MTX on each cell type can be examined. Finally, we undertook experiments using a mutant cell line deficient in a salvage pathway, to examine the possibility that MTX resistance is mediated by the utilisation of salvage pathways for nucleotide synthesis.

Materials and methods

CELL PREPARATION

Peripheral blood mononuclear cells (PBMC) were obtained from the heparinised blood of healthy volunteers by a standard Ficoll-Hypaque density centrifugation method. RA
synovial tissues were obtained during surgery from eight patients with active synovitis who fulfilled the 1987 American Rheumatism Association criteria for RA.27 Single cells were prepared by enzymatic digestion of the synovial tissues, as described previously.28

culture of hybridomas, was used because synovial B cell cloning was not successful in RPMI 1640 medium. After two weeks of culture, half of the medium was replaced with fresh medium; 96 wells were prepared for each concentration of MTX.

T-CELL CLONING

Utilising techniques described earlier,28 we cloned T cells from PBMC obtained from healthy donors and from single cells prepared from RA synovial tissues obtained during surgical procedures. Briefly, PBMC and synovial single cells were inoculated into 96 well microtitre plates at 1–2 cells/well for PBMC and 2–20 cells/well for synovial single cells, with x irradiated (50 Gy) PBMC (2 × 10^4 cells/well) and x irradiated (100 Gy) Raji cells (1 × 10^4 cells/well). The cells were cultured in RPMI 1640 medium supplemented with 10% fetal calf serum (FCS), 2 mmol/l l-glutamine, 0.5 μg/ml phytohaemagglutinin-P (Difco, Detroit, MI), and 0.5 ng/ml recombinant human interleukin-2 (Takeda Chemical Industries, Osaka, Japan). Various concentrations of MTX were added to the culture; 96 wells were prepared for each concentration. After two weeks of culture, each well was observed under an inverted microscope to determine the presence or absence of lymphocyte colonies. Cloning efficiencies were calculated for each concentration of MTX, assuming a Poisson distribution for the number of cells with the potential to form colonies, as follows:

\[
\text{cloning efficiency (\%)} = \frac{-1}{c \ln (\text{number of negative wells / total number of wells})} \times 100 \%
\]

where \(c\) = number of plated cells/well.

Cloning efficiencies in cultures with MTX were compared with those in control cultures without MTX.

To examine the reverting effects of hypoxanthine and thymidine supplementation on growth inhibition by MTX in T cells, various concentrations of hypoxanthine and thymidine supplement (Gibco, Gaithersburg, MD) and 0.1 μmol/l MTX were added to the cloning cultures of T cells.

B CELL CLONING

B cells were cloned from PBMC and RA synovial single cells by procedures described previously, using Epstein-Barr virus (EBV) transformation with some modifications.29

CD19 positive cells were positively selected by using CD19 antibody coated magnetic beads (Dynal, Norway) from PBMC of healthy donors. CD19 PBMC and synovial single cells were incubated in the supernatant of the B95-8 cell line for one hour and then inoculated into 96 well plates at 100 cells/well for PBMC and 50–200 cells/well for synovial single cells, with x irradiated PBMC (5 × 10^4 cells/well). GIT medium (Nihonseiyaku Co Ltd, Tokyo, Japan) supplemented with 10% FCS was used for the cloning of B cells from single synovial cells; this medium, originally developed for serum free
Effect of MTX on clonal growth of lymphocytes and synovial cells in RA

Table 1 Effect of methotrexate (MTX) on the clonal growth of T cells from normal blood and RA synovium

<table>
<thead>
<tr>
<th>Methotrexate (μmol/l)</th>
<th>0</th>
<th>0.001</th>
<th>0.01</th>
<th>0.025</th>
<th>0.05</th>
<th>0.075</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expt 1</td>
<td>36-8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0**</td>
</tr>
<tr>
<td>Expt 2</td>
<td>32-6</td>
<td>28-8</td>
<td>43-8</td>
<td>1.0**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
</tr>
<tr>
<td>Expt 3</td>
<td>18-5</td>
<td>3-8</td>
<td>15-7</td>
<td>1-1**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
</tr>
<tr>
<td>RA synovium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expt 1</td>
<td>5-8</td>
<td>5-8</td>
<td>3-7</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
</tr>
<tr>
<td>Expt 2</td>
<td>0-4</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
</tr>
<tr>
<td>Expt 3</td>
<td>3-8</td>
<td>4-9</td>
<td>2-1**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
</tr>
</tbody>
</table>

Values represent cloning efficiency (%).

— No done.

Statistical significance of growth inhibition: *p < 0.05; **p < 0.01, compared with control (no methotrexate) (χ² analysis).

Table 2 Reversal of suppressive effects of methotrexate (MTX) on the T cell growth by hypoxanthine and thymidine supplementation

<table>
<thead>
<tr>
<th>No MTX</th>
<th>MTX 0.1 μmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypoxanthine (μmol/l)</td>
</tr>
<tr>
<td></td>
<td>Thymidine (μmol/l)</td>
</tr>
<tr>
<td>Expt 1</td>
<td>12-3</td>
</tr>
<tr>
<td>Expt 2</td>
<td>20-0</td>
</tr>
</tbody>
</table>

Values represent cloning efficiency (%).

Statistical significance in the difference of T cell growth in the presence of 0-1 μmol/l MTX compared with plates with no hypoxanthine or thymidine: *p < 0.01 (χ² analysis).

by low concentrations of MTX (table 1). Thus MTX had potent inhibitory effects on the clonal growth of T cells from two different sources.

Partial rescue by hypoxanthine and thymidine of MTX inhibited T cell growth was obtained by adding the supplement solution at hypoxanthine and thymidine concentrations of 100 and 16 μmol/l, respectively (table 2). The greatest recovery was observed with the hypoxanthine and thymidine concentrations of 200 and 32 μmol/l, respectively, at which the rescue effect reached a plateau (table 2).

EFFECTS OF MTX ON THE CLONAL GROWTH OF B CELLS

As observed in T cells, MTX had potent inhibitory effects on the clonal growth of B cells cloned directly from CD19 PBMC by EBV transformation; none of the wells was positive for cell growth when MTX was added in concentrations of 0-025 μmol/l or greater (table 3). The clonal growth of synovial B cells was relatively resistant to MTX compared with blood B cells: only partial inhibition was observed with a concentration of 0-025 μmol/l.

MTX (table 3). However, as GIT medium contains 15-0 μmol/l hypoxanthine and 1-5 μmol/l thymidine, it is likely that these compounds reversed the inhibition of cell growth by MTX.

EFFECTS OF MTX ON THE CLONAL GROWTH OF SYNOVIAL ADHERENT CELLS

MTX had only marginal inhibitory effects on the clonal growth of synovial adherent cells in a concentration of 0-1 μmol/l (table 4)—the concentration that completely inhibited the growth of T and B cells. Even when the MTX concentration was increased to 1-0 μmol/l, 30–50% of the cells were found to be resistant (table 4), in sharp contrast to the data obtained from T and B cells. Surprisingly, the inhibitory effects of MTX 50 μmol/l on synovial adherent cells were similar to those of MTX 1-0 μmol/l (table 4). Thus the clonal growth of synovial adherent cells was found to be highly resistant to MTX compared with that of T and B cells.

EFFECTS OF MTX ON THE CLONAL GROWTH OF A HUMAN FIBROSARCOMA CELL LINE, HT1080

MTX had potent inhibitory effects on the clonal growth of large colony forming HT1080 cells; the results were similar to those observed in T and B cells (table 5). In contrast, and in common with synovial adherent cells, the small colony forming subpopulation was resistant to MTX, suggesting that sensitivity to MTX may relate to the rate of proliferation of the cells, and may not depend on cell type.

When dialysed FCS was substituted for regular FCS in the cloning medium, even the slowly proliferating subpopulations of HT1080 were quite sensitive to MTX (table 5). In addition, low concentrations of MTX completely inhibited the growth of both rapidly proliferating (large colony) and slowly proliferating (small colony) subpopulations of HT1080TG (table 5).

EFFECTS OF MTX ON THE CLONAL GROWTH OF SKIN FIBROBLASTS

In common with the synovial adherent cells and the slowly proliferating subpopulation of HT1080 cells, skin fibroblasts were resistant to MTX (table 6). In addition, clonal growth of a fibroblast line (MiTen) from a patient with genetic HPRT deficiency (Lesch-Nyhan syndrome) was completely inhibited by low concentrations of MTX, suggesting again that the salvage enzyme has an important role in MTX resistance (table 6).

Discussion

To investigate the cellular basis for positive effects of MTX in the treatment of RA, we studied the inhibitory effects of MTX on the clonal proliferation of T and B lymphocytes and synovial adherent cells. MTX completely inhibited the clonal growth of T and B cells obtained from both peripheral blood and
The effects of methotrexate on the clonal growth of RA synovial adherent cells

<table>
<thead>
<tr>
<th>Methotrexate (μmol/L)</th>
<th>0</th>
<th>0-01</th>
<th>0-1</th>
<th>1-0</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt 1 (20 cells/well)</td>
<td>1.72</td>
<td>—</td>
<td>1.37</td>
<td>0.55**</td>
<td>0.91*</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Expt 2 (20 cells/well)</td>
<td>—</td>
<td>—</td>
<td>0.26</td>
<td>0.55</td>
<td>0.38</td>
<td>—</td>
<td>0.05</td>
<td>0.16</td>
</tr>
<tr>
<td>Expt 3 (50 cells/well)</td>
<td>0.78</td>
<td>0.75</td>
<td>0.66</td>
<td>0.37*</td>
<td>—</td>
<td>0.34**</td>
<td>—</td>
<td>0.29**</td>
</tr>
</tbody>
</table>

Values represent cloning efficiency (%).

*Not done.

Statistical significance of the growth inhibition in the presence of methotrexate: *p < 0.05; **p < 0.01, compared with control (no methotrexate) (χ² analysis).

Table 5 Effects of methotrexate on the clonal growth of human fibrosarcoma cell line HT1080

<table>
<thead>
<tr>
<th>Materials</th>
<th>Colony size</th>
<th>Methotrexate (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>HT1080</td>
<td>Expt 1 Large</td>
<td>19-5</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>5-5</td>
</tr>
<tr>
<td></td>
<td>Expt 2 Large</td>
<td>8-5</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>4-4</td>
</tr>
<tr>
<td>HT1080 (dialysed FCS)</td>
<td>Expt 1 Large</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>Expt 2 Large</td>
<td>0-9</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>1-2</td>
</tr>
<tr>
<td>HT1080TG (HPRT deficient)</td>
<td>Expt 1 Large</td>
<td>43-7</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>30-2</td>
</tr>
<tr>
<td></td>
<td>Expt 2 Large</td>
<td>18-2</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>2-1</td>
</tr>
</tbody>
</table>

Values represent cloning efficiency (%).

*Not done.

Statistical significance of the growth inhibition in the presence of methotrexate: **p < 0.01, compared with control (no methotrexate) (χ² analysis).

Rheumatoid synovial tissues, in the low concentrations generally achieved in peripheral blood during treatment with MTX (reported to be 0.1–0.72 μmol/l),32–33. As MTX concentrations are reported to be greater in synovial tissues than in peripheral blood,34 MTX treatment is more likely to inhibit proliferation of T and B lymphocytes in synovial tissues than in the periphery. In contrast, when MTX was added to the cloning culture of synovial adherent cells, only 50% inhibition in cloning efficiency was observed at a concentration of 1.0 μmol/l, and the inhibitory effects of the drug were not enhanced even in greater concentrations of up to 50 μmol/l. Thus it seems that the clonal growth of synovial adherent cells is highly resistant to MTX, compared with that of T and B cells.

Meyer et al35 reported a dose-dependent inhibition of the growth of synovial fibroblasts by MTX, which differs from our present findings. They reported 50% low concentration with a concentration of MTX 0.27 μmol/l, while we observed no growth inhibition with MTX 0.1 μmol/l and approximately 50% inhibition with MTX 1.0 μmol/l (table 4). These differences may relate to differences in culture methods and procedural techniques. Meyer’s group used polyclonal cultures in their experiments, whereas we used only clonal culturing, and they used synovial adherent cells at the first to third passages, whereas we used only fresh synovial single cells; it is possible that cells with greater proliferative capacity become more dominant after cell passage, and such cells could conceivably be more sensitive to the inhibitory effects of MTX.

Sensitivity to MTX appears to be largely dependent on the rate of proliferation of the cells, rather than on cell type, as the clonal growth of a rapidly proliferating (large colony forming) subpopulation of a human fibrosarcoma cell line, HT1080, was completely inhibited by low concentrations of MTX, while that of a slowly proliferating (small colony forming) subpopulation from the same line was not. In the latter line, the apparent resistance of synovial adherent cells to MTX in the present study may be explained by a low rate of proliferation.

Reduced transport of MTX through the cell membranes and amplification of the dihydrofolate reductase (DHFR) gene are known mechanisms for MTX resistance in cultured cells.36–38 However, they alone do not explain the MTX resistance of the slowly proliferating subpopulation of HT1080 cells, as deficiency in the purine salvage pathway enzyme HPRT, in the absence of any alteration in membrane permeability or DHFR gene amplification, rendered the cells quite sensitive to MTX. Our data suggest that MTX is incorporated even into slowly proliferating HT1080 cells and inhibits de novo nucleotide synthesis, but that dialysable compound(s) of low molecular weight can be utilised by the salvage pathway to provide amounts of nucleotides sufficient to support the clonal growth of slowly proliferating cells, even in the presence of MTX. In support of this, MTX inhibited the growth of the slowly proliferating HT1080 cells when the cells were cultured with dialysed FCS, which may be presumed to have been depleted of substrates for the salvage pathway. The dialysable compounds implicated may be either purines or pyrimidines (or both), which are known to serve as a source of nucleotides via salvage pathways. Our finding that small concentrations of MTX inhibited the growth of both rapidly proliferating (large colony) and slowly proliferating (small colony) subpopulations of HT1080TG further supports the notion that the MTX resistance of slowly proliferating subpopulations of HT1080 is related to the salvage pathway.

Equivalent MTX resistance phenomena were observed in skin fibroblasts. Although the clonal growth of normal skin fibroblasts was resistant to MTX, the growth of skin fibroblasts from a patient with Lesch-Nyhan syndrome—a genetic deficiency in HPRT—was inhibited by low concentrations of MTX. These results suggest that nucleotide synthesis through the salvage pathway utilising low concentrations of free bases in FCS may be a general mechanism for MTX resistance in slowly proliferating cells. Apparent resistance of synovial adherent cells to MTX also may be based on similar mechanisms, though the
Inhibition of the clonal growth of T cells by MTX was reversed at least partially by the addition of hypoxanthine and thymidine to the culture, confirming that the inhibition of de novo purine and pyrimidine synthesis is the mechanism by which growth is inhibited by MTX. The concentration of hypoxanthine required to achieve 80% recovery was 200 μmol/l in T cells. The concentration of hypoxanthine in the culture medium (10% FCS) was approximately 4 μmol/l (measured by HPLC, unpublished data); this concentration appears to have been insufficient to achieve complete reversal of inhibition of growth by MTX in T cells.

The clinical observation that the efficacy of MTX was decreased by supplementation with an active form of folate (folic acid), while cessation of folic acid led to the recovery of MTX effectiveness, suggests that inhibition of DHFR is also implicated in the mechanism for clinical efficacy of MTX. However, in other studies in which smaller doses of folic acid or folate were administered in different regimens, no reduction in the efficacy of MTX was reported, though a reduction in the side effects of MTX was observed in some. Therefore, there are discrepancies concerning the effects of folinic acid on the effectiveness of MTX, which seem to be related to differences in the dosage and administration schedule of folic acid.

Although our in vitro culture system may not be an accurate reflection of in vivo cell proliferation, the data from the present study may have in vivo relevance. The proliferation of T and B lymphocytes, but not synovial adherent cells, was inhibited in vivo in patients with RA receiving low dose MTX treatment. The in vivo synovial cells may be resistant to MTX, as they utilise small concentrations of free bases in synovial fluid for the synthesis of nucleotides through the salvage pathway. This idea is supported by the observation that the concentration of hypoxanthine in RA synovial fluid is similar to that in our culture medium (approximately 4 μmol/l, unpublished data). Even when free bases are present in body fluids, they might not be available in quantities sufficient to maintain the proliferation of activated T and B cells. By adjusting the amounts of purines and pyrimidines present in vivo, it may be possible to manipulate the therapeutic effect of MTX. Thus an ability to relate the resistance and sensitivity of various cells in vivo to the availability of purine and pyrimidine compounds may pave the way to a better understanding of, and better adjustment of, the effects of MTX in the treatment of RA.

Nakajima, Hakoda, Yamanaka, Kamatani, Kashieazaki

Divergent effects of methotrexate on the clonal growth of T and B lymphocytes and synovial adherent cells from patients with rheumatoid arthritis.

A Nakajima, M Hakoda, H Yamanaka, N Kamatani and S Kashiwazaki

doi: 10.1136/ard.55.4.237

Updated information and services can be found at: http://ard.bmj.com/content/55/4/237

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/