Sequential study of bone mineral density in patients with systemic lupus erythematosus

A loss of bone mineral density has been reported1-3 in premenopausal women with systemic lupus erythematosus (SLE), but its pathogenesis is uncertain.4 Studies on the sequential changes in bone mass in these patients are scarce.5

Recently, we studied 74 premenopausal women with SLE without any complications or treatment (except for glucocorticoids) that could influence bone mineral density.6 We excluded nine osteoprotic patients according the established World Health Organisation criteria,7 because they were on treatment for low bone density. We repeated the measurement of bone mass after 18 months in 25 consecutive patients, all of whom had continued on glucocorticoid treatment during this period.

Bone mineral density was measured in the lumbar spine (L-2-L-4) and femoral neck (FN) by dual energy x-ray absorptiometry (DXA), using a densitometer (Hologic QDR 1000). Measurement of the bone mineral content, calibrated with the Hologic X-ray absorptiometry, is an anthropomorphic phantom of the known mineral content, was accurate to 0.5%. The precision measurement was better than 0.01 g cm\(^{-2}\) (coefficient of variation = 1.0% at bone mineral density 1.0 g cm\(^{-2}\)). Bone activity was assessed with the University College Hospital/Middlesex SLE scoring system,8 by a numerical score graded from 1 to 4 (inactive to severely active disease).

The results were expressed as the mean (SD). For all conventional analyses we used the SPSS/PC software package. A t test was used and the correlations were calculated by linear regression analysis. A P value was considered significant at P < 0.05.

At the time of the first densitometry, the mean age was 31.7 (6.8) years, and disease duration was 91 (64) months. After 18 months there was no significant decrease in bone mineral density, despite glucocorticoid treatment (table), in either the lumbar spine or the femoral neck. No fractures were found. Serum calcium, phosphate, creatinine, and alkaline phosphatase, and 24 hour urine calcium and phosphorus did not change during this period.

Using linear regression, there was no correlation between bone mineral density or changes in bone mineral density and the prednisone dose (cumulative and baseline). We found no correlation between disease duration or mean disease activity grade and lumbar spine (L-2-L-4) or no other correlations with bone mineral density were found.

This study shows that in premenopausal SLE patients lumbar and femoral bone min-

Characteristics of 25 patients at baseline and after 18 months

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Baseline (mean (SD))</th>
<th>18 months (mean (SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-L4 (g cm(^{-2}))</td>
<td>1.00 (0.09)</td>
<td>1.00 (0.1)*</td>
</tr>
<tr>
<td>FN (g cm(^{-2}))</td>
<td>0.80 (0.07)</td>
<td>0.79 (0.08)*</td>
</tr>
<tr>
<td>P baseline (mg)</td>
<td>17 (2)</td>
<td>16 (9.4)</td>
</tr>
<tr>
<td>P cumulative (g)</td>
<td>35 (2)</td>
<td>41 (5)</td>
</tr>
<tr>
<td>Activity grade</td>
<td>2.47 (0.4)</td>
<td>2.41 (0.5)</td>
</tr>
</tbody>
</table>

* All P values > 0.05 versus baseline.

eral density did not change with respect to baseline values after 18 months, despite continuous glucocorticoid treatment (the mean dose was 9.2 mg/day during the 18 months). Recently, Pons et al9 reported similar results in a study of 31 premenopausal women, followed for a mean of 36.6 months. Kalla et al10 also found no changes in bone mineral density in 56 SLE patients over 18 months.

The effect of glucocorticoids on SLE osteoporosis is controversial.11 We did not find any correlation between prednisone dose and bone mineral density in chronic steroid users. The effects of glucocorticoids on the bone mass are most pronounced early in the course of steroid treatment.12 The data may partly explain our results. Also, a multifactorial action could explain the lack of correlation between the dose of glucocorticoids and bone mineral density. Glucocorticoids may paradoxically inhibit bone resorption that has been stimulated by PGE\(_2\) or cytokines.10,11

In conclusion, after 18 months there were no significant decreases in bone mineral density in premenopausal SLE patients on glucocorticoid treatment. The reported reduction in bone mineral density in these patients may occur at the onset of the disease. Nevertheless, future studies to demonstrate a small loss of bone mineral density in SLE will probably require more patients and a longer period of study.

F FORMIGA
J M NOLLA
I MOGA
D ROIG-ESCOPET

Internal Medicine and Rheumatology Service, Hospital "Principe de Asturias," CSU de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.

Unilateral Heberden's nodes in a case of Erb-Duchenne paralysis

Referring to the letter by Etherington and Spector ("Asymmetrical nodular osteoarthri-
tis in a patient with a hemiparesis", Annals of the Rheumatic Diseases, November 1995, p 936), we would like to offer a contribution based on our recent experience.

Although Stecher and Karron1 suggest that apparent involution of Heberden's nodes on the hemiplegic side should be attributed exclusively to the effects of a reduction of soft tissues, in spite of the report of the 29 x 17 cm asymmetrical nodes, Forester,2 Hench and McEwen,3 and Thompson and Bywaters4 suggest a "neurogenic protection" against nodes on the affected side.

This particular characteristic of Heberden's and Bouchard's nodes, was pointed out both in hemiplegic subjects following a central cerebral lesion—as in the case of Etherington and Spector—or in upper limbs affected by peripheral paralysis (obstetric paralysis or traumatic interruption of a nerve).

Our case was a 45 year old female who presented with Erb-Duchenne paralysis and Heberden's nodes limited to the healthy side, while the affected arm shows a lack of musculoskeletal development (radius, ulna, carpus, metacarpus, and phalanges) (figure). In analogy with what has been pointed out in the case of rheumatoid arthritis and hemiplegia5 it is possible to formulate several hypotheses:

1. A protective action of central or peripheral neurological lesions with respect to osteoarthritic or arthritic manifestations of the affected side through interruption of the central reflex arc, which is responsible for the symmetric lesions in rheumatoid arthritis and osteoarthritis.

2. Attenuation of superimposed inflammation in osteoarthritis by the conditioning of the biochemical expression of the neurogenic inflammation (mediated by substance P, a neuropeptide which acts specifically at low concentrations on "formyl peptide" receptors; this leads to the activation of polymorphonuclear cells and is present both early and in large quantities in inflamed synovium).6

3. Not be ignored, in our opinion, is the physiological decline of the proprioception in subjects of advancing age8 and the absence of the normal proprioceptive stimuli linked to the "microtraumatic" use of the hands which is limited only to the affected hand. Such absence is also presumably responsible for lack of node production related to esthetic osseification at the distal phalanx level.

We agree with Etherington and Spector9 about the possibility that several valid concepts relating to the protective effects of neurological lesions, either central or periph-
X-ray examination of the hands shows, on the left side, underdevelopment of the bones of the carpus, metacarpus, and phalanges without osteodegenerative lesions of the distal interphalangeal joints; Heberden’s nodes are present on the right side.

Camptocormia or cormoptosis? The etymology of the word

We read with interest the recent Lesson of the Month that “not all stoops are due to osteoporosis”. It is now clear that camptocormia of the elderly is a different clinical entity from the syndrome seen in the first world war which affected military recruits and was generally regarded as a psychogenic disorder. Therefore we propose to reserve the term “cormoptosis” for the stoop presented in the elderly when other neurological disorders have been excluded.

L ZORZIN
M L SORGI
G PALOMBI

Institute of Rheumatology, “La Sapienza” University, Policlinico “Umberto I”, Viale del Policlinico, Rome, Italy

Camptocormia or cormoptosis? The etymology of the word

We read with interest the recent Lesson of the Month that “not all stoops are due to osteoporosis”. It is now clear that camptocormia of the elderly is a different clinical entity from the syndrome seen in the first world war which affected military recruits and was generally regarded as a psychogenic disorder. Therefore we propose to reserve the term “cormoptosis” for the stoop presented in the elderly when other neurological disorders have been excluded.

DIMITRIOS KARRAS
Department of Rheumatology, NIMTS, Athens, Greece

JOHN VASILAKOS

401 Military Hospital of Athens, Messogion Av, Athens, Greece
Unilateral Heberden's nodes in a case of Erb-Duchenne paralysis.

L Zorzin, M L Sorgi and G Palombi

doi: 10.1136/ard.55.11.857-b

Updated information and services can be found at:
http://ard.bmj.com/content/55/11/857.2.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/