Antineutrophil cytoplasmic antibodies and the eosinophilia myalgia syndrome

The eosinophilia myalgia syndrome (EMS) is an inflammatory multisystem disease which emerged in epidemic form in 1989 and was linked to the ingestion of L-tryptophan.1 In the acute form of the EMS, severe myalgia and pronounced blood eosinophilia are accompanied by widespread organ involvement with the skin, lungs, serosal membranes, and the peripheral nervous system being involved most frequently.2,3 The chronic form of the EMS is characterised by progressive fascial and cutaneous fibrosis, leading to the development of a picture resembling eosinophilic fasciitis, accompanied by polyneuropathy, chronic fatigue, and psychological dysfunction.4,5

A spectrum of vascular lesions has been described including perivascular aggregation of mononuclear cells, intimal and medial thickening and fibrosis, ultrastructural alterations of the vascular endothelium, and frank vasculitis with mural infiltration by mononuclear cells.5,6 The last of these was found primarily in small arteries, veins and capillaries, and by immunofluorescence microscopy no deposition of immunoglobulins or complement components was found.1,5

These histopathological features resemble those of the pauci-immune small vessel vasculitides, a group of diseases strongly associated with antineutrophil cytoplasmic antibodies (ANCA).7 In the March 1991 issue of this journal Cilurzo and colleagues8 reported a patient with acute EMS and perinuclear ANCA (pANCA) with anti-myeloperoxidase (MPO) specificity together with a small vessel vasculitis in skeletal muscle. This report prompted the question whether EMS also is an ANCA associated disease.

From a nationwide collection of EMS sera, we tested a random sample of 45 sera for ANCA. The sera were from 39 females (age 30–69 years) and six males (age 51–61 years) who fulfilled the diagnostic criteria of chronic EMS.4 ANCA testing was performed in compliance with the guidelines of the European ANCA Study Group with an indirect immunofluorescence test on ethanol fixed and formalin fixed granulocytes; antibody specificity was tested by specific enzyme linked immunosorbent assay (ELISA) using proteinase 3 (PR3), MPO, lactoferrin, lysozyme, elastase, and cathepsin G as antigens.5 For distinction between pANCA and antinuclear antibodies (ANA), sera were also examined on cultured human cells.6

We found none of the 45 sera to be positive for ANCA. Likewise all sera were negative by ELISA testing for the above mentioned antibody specificities. A number of sera produced fluorescent staining on the alcohol fixed granulocytes; however, this was attributable to ANA. In a Chang cell assay, 19 of 45 sera (42%) tested positive for ANA.

The strongest clinical associations of ANCA have been shown to be that of anti-PR3 with Wegener’s granulomatosis (WG) and of anti-MPO with microscopic polyangiitis (MPA) and pauci-immune rapidly progressive glomerulonephritis (RPGN).7 These disorders have been categorised as the ANCA-associated vasculitides. In WG, 80% of patients are positive for cytoplasmic ANCA (cANCA); in generalised disease this is in the more than 90%, with anti-PR3 being the most frequent antibody sub specificity (table). The association between pANCA or anti-MPO and MPA or pauci-immune RPGN is less strong—approximately 65% of MPA patients are anti-MPO-positive. While anti-PR3 is highly specific for WG, anti-MPO has also been found at a low rate and low titres in a number of other chronic inflammatory diseases.8

A strong association of ANCA with secondary vasculitides has not yet been found.9,10 The present results conform with this; notably, no serum showed anti-PR3 or anti-MPO reactivity. These results thus add to the evidence that anti-PR3 and anti-MPO are important markers for the classification and clinical diagnosis of primary systemic vasculitides, but not secondary vasculitides. The low prevalence of ANCA in the EMS makes it unlikely that ANCA has a pathogenic role in this disorder.

SILENT MYOCARDIAL INFARCTION IN WEGENER’S GRANULOMATOSIS

At postmortem, patients with Wegener’s granulomatosis (WG) frequently show a clinically overlooked and diffuse disease process. Cardiologically, many such patients have been asymptomatic but present histological findings of specific heart involvement. We report two cases of silent myocardial infarction related to WG—a feature which, to our knowledge, has not been reported in clinical series.

Patient 1. A 42 year old man was admitted to hospital because of severe vasculitis flare. He had an eight month history of arthritis and lower limb dysaesthesia. Examination showed an acutely ill patient with a 39°C fever. He had oral ulcers, haemorrhagic gingival hyperplasia, bilateral haemorrhagic nasal discharge with crusts, diffuse necrotic purpura and black discoulouration of fingers and toes. Ankle jerks were absent. Standard blood tests showed: leucocyte count 9.6 × 10⁹/l; serum creatinine 112 µmol/l; C reactive protein 278 mg/l; fibrin 12 g/l; total creatine kinase (CK) concentration 1102 U (normal range 15–100 U). Chest X-ray showed cardiomegaly, and bilateral pleural effusion with lung shadow measurements of 130 U. Cholesterol, triglyceride and blood glucose values were within the normal range. Microscopic haematuria was present at 15/HFP. The electrocardiogram showed ST segment elevation and loss of R waves in leads V1, V2, and V3. Silent anterior myocardial infarction was diagnosed and WG was suspected. It was confirmed by: a) anti-neutrophil cytoplasmic antibodies (diffuse cytoplasmic fluorescence) in the serum; b) pansinusitis demonstrated by computed tomography scan; c) multinucleitis on electro-cardiographic examination; d) necrotising vasculitis on skin biopsy. Lupus anti-coagulant and antidiiodilipin antibodies were absent. Antithrombin III, protein C and

Clinical associations of antineutrophil cytoplasmic antibodies (ANCA)

<table>
<thead>
<tr>
<th>cANCA</th>
<th>anti-PR3</th>
<th>pANCA</th>
<th>anti-MPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wegener’s granulomatosis (n = 445)</td>
<td>358 (80%)</td>
<td>292 (66%)</td>
<td>5 (1%)</td>
</tr>
<tr>
<td>Microscopic polyangiitis (n = 44)</td>
<td>8 (18%)</td>
<td>7 (17%)</td>
<td>33 (73%)</td>
</tr>
<tr>
<td>Churg-Strauss syndrome (n = 17)</td>
<td>5 (30%)</td>
<td>5 (30%)</td>
<td>12 (71%)</td>
</tr>
<tr>
<td>EMS (n = 45)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

cANCA = Cytoplasmic ANCA; pANCA = perinuclear ANCA; PR3 = proteinase 3; MPO = myeloperoxidase; EMS = eosinophilia myalgia syndrome.
protein S plasma concentrations were normal. Initial treatment comprised intra-
venous administration of methypred
nisolone, cyclophosphamide and sodium hep-
arinate. Other drugs included diltiazem,
dinitroisorbide, and enalapril. The short term
course was uneventful. At day 14, the patient
had a sudden rupture of the spleen.
Splenectomy was performed. Histological
analysis of the spleen showed widespread
necrotizing vasculitis with haemorrhagic
infarction. At day 30, coronarography was
normal. At month 24, the patient had no
active sign of WG nor any recurrence of
myocardial ischaemia.

Patient 2. A 41 year old woman
was admitted for suspected systemic vasculitis.
She had a two year history of crusted rhinitis
with respiratory symptoms, and showed
productive cough with bloody sputum. A
chest radiograph showed disseminated
cavitation, and nodules. Fibroscopy
disclosed a pseudotumoral aspect of the
bronchial mucosa. Microscopic examination of
a bronchial specimen showed giant cell
granuloma. Treatment against tuberculosis
was started with four drugs. Because
distressing neurological signs appeared
investigation was transferred to our department.
Physical examination showed a febrile,
disoriented, acutely ill woman with nasal
obstruction, bilateral ear chondritis, diplopia,
right upper eyelid ptosis, dysaesthesia
and paresis in the right arm, and absent infrapatellar
ankle jerk. Chest auscultation was normal.
Standard blood tests showed: leucocyte
count 16.7 x 10⁹/l; creatinine 52 μmol/l; C
reactive protein 252 mg/l; fibrin 10 g/l; total
CK concentration 179 U/l; with MB isoenzyme
179 U. Cholesterol, triglycerides and blood
glucose values were within the normal range.
Lowgrade haematuria was present at
10/HPF. The electrocardiogram showed ST
segment and T wave elevation in leads V4
and V5, with loss of R waves in the anterior
leads. Echocardiography showed septal
aakinesia and diffuse hypococontractility without
dilation of the left ventricle. Silent acute
anteresetal myocardial infarction was
diagnosed. A diagnosis of severe WG was
further supported by: a) antineutrophil cyto-
plasmic antibodies (diffuse cytoplasmic
fluorescence) in the serum; b) mononuertis
multiplex on Electromyogram study; c)
multiple bilateral infarcts of the white matter
on cerebral magnetic resonance imaging; d)
typical granulomatous necrotizing vasculitis
on nasal biopsy. Tests for antiphospholipid
antibodies were negative. Treatment
included intravenous pulses of high-dose
prednisolone followed by oral prednisone,
monthly intravenous cyclophosphamide, and
sodium heparinate. All symptoms remitted
rapidly, except for mononeuritis multiplex
that progressively deteriorated over a period
of months. After eight cycles, cyclo-
phosphamide was changed for daily oral
etoposide which has been considered to be
effective in neuropathy. At month 18,
relapse of sinusitis and pulmonary nodules
required increased prednisone dosage and
etoposide was combined with methotrexate.
At month 22, the patient had no
active sign of WG nor any recurrence of
myocardial ischaemia.

Because Wegener's granulomatosis was once
a uniformly fatal disease, before
successful use of cyclophosphamide therapy,
early reports were only of postmortem
findings. However, reviewing 54 cases,
found myocardial granulomata in six and focal
coronary arteries in 15; death was retrospectively
attributed to myocardial infarction in two
cases. A more recent comprehensive review
reported the most common pathological
findings as pericarditis in 50%, focal
myocarditis in 25%, coronary arteritis in
50%, and myocardial infarction in 11%
of WG postmortem cases in which the heart
was examined.

Such high prevalence contrasts sharply
with clinical data collected in the
cyclophosphamide era. Only 10 (6%) of 158 WG
patients had detectable heart involvement in
the series reported by Hoffman et al. All had
only specific pericarditis and no myocardial
ischaemia was reported. Heart involvement
was not mentioned among the causes of
death. In contrast, there have been several
patients published reports of WG with myocardial
involve—heart muscle disease, heart
block and supraventricular tachycardia, and
cardiac mass. 1-7

Our two patients had myocardial infarction
clearly related to WG because: a) myocardial
infarction was novel, with no angina in the
past; b) myocardial infarction accompanied
severe generalised WG flare, c) the extent of
clinical systemic vasculitis was unusually
diffuse (distal limb necrosis and splenic
infarction in patient 1 and cerebral vasculitis
in patient 2); d) atheroma could be rejected as
the cause of myocardial infarction because
of normal coronarography in patient 1 and
absence of any risk factor in patient 2; and e)
no cardiac ischaemic event was observed
during a two year follow up under immuno-
suppressive therapy.

In the literature, we could find only two
reports of myocardial infarction recognised
in alive WG patients. Gatenby et al report the
fulminant course of WG in a 28 year old man
who died from painful and massive myo-
cardial infarction. Pathological examination of
the heart showed vasculitis with fibrinoid
necrosis of the media and partial occlusion
of the lumen by pale antemortem thrombus in
all coronary vessels. 8 In the other case reported
in the literature, an embolic mechanism
rather than vasculitis could account for
the symptomatic myocardial ischaemia.

Wegener's granulomatosis is defined as a
small vessel vasculitis. The severity of the
condition, and occasional associated death,
might be related to the progression of
vasculitis and thrombosis to larger vessels. 9
Coronary wall inflammation and
formation of lumen blood clot are two
mutually non-exclusive processes that
may have been responsible for myocardial
ischaemia in our two patients.

In practical terms, cardiac enzymes
and electrocardiography should be repeatedly
monitored in a patient with WG flare.

THOMAS PAPO
JEAN-CHARLES PIETTE
RACHID LARAKI
OLIVIER BLETY
DU LE THI HUONG
PIERRE GODEAU
Department of Internal Medicine,
Hôpital Pitié-Salpêtrière, Paris, France

Correspondence to: Dr Papo, Internal Medicine Unit,
Hôpital Pitié-Salpêtrière, 83 Boulevard de
l'Hôpital, 75651 Paris cedex 13, France.
Silent myocardial infarction in Wegener's granulomatosis.

T Papo, J C Piette, R Laraki, O Bletry, D L Huong and P Godeau

doi: 10.1136/ard.54.3.233-b

Updated information and services can be found at:
http://ard.bmj.com/content/54/3/233.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/