The idiiosyncratic myelotoxicity of gold therapy has been well documented and the toxic effect may last as long as 15 to 30 days after drug withdrawal. Although filgrastim has not been licensed for the treatment of non-cytotoxic drug induced agranulocytosis and the therapeutic dose range for these conditions has not been determined, the standard dose of filgrastim for chemotherapy induced neutropenia has been 5 mcg/kg/day.

Before approval by the Food and Drug Administration, Amgen Inc provided filgrastim to patients with non-cytotoxic drug-induced agranulocytosis in a compassionate use protocol. One of these patients was a 20 year old woman who had developed agranulocytosis after five weeks of gold therapy. For two weeks after the discontinuation of gold treatment the patient had an absolute neutrophil count (ANC) of 0/mm, and then received filgrastim 10 mcg/kg/day, attaining an ANC of 5100/mm after four days of filgrastim treatment. Although this was not a controlled clinical trial, this experience demonstrates the activity of filgrastim in reversing a severe neutropenia.

The patient described by MacDonald et al may have had an improved response with a higher dose of filgrastim.

SHERLI L BROWN
ELIZABETH R HILL
Amgen Inc,
1840 DeHavilland Drive,
Thousand Oaks,
California 91320-1789,
USA


G-CSF in gold-induced aplastic anaemia

A letter from MacDonald et al1 reported the case of a 55 year old woman with psoriatic arthritis who developed aplastic anaemia after gold treatment, and was reported to have a less than therapeutic response to filgrastim (G-CSF, Neupogen) therapy. Approximately 30 days after the gold treatment was discontinued, a bone marrow aspirate and biopsy revealed severe aplasia. She was then treated with filgrastim 1.5 mcg/kg on alternate days for three days, then daily for an additional 10 days.

Brother and sister with myeloperoxidase associated autoimmune disease

We read with interest the recent article by Murphy et al describing two sisters with vasculitis associated with antineutrophil cytoplasmic autoantibodies (ANCA). We report a brother and sister with autoimmune disease and circulating antibodies directed against myeloperoxidase.

The brother, aged 77 years, presented with arthralgia, thrombocytopenia and a slowly deteriorating renal function. A renal biopsy revealed extracapillary focal segmental glomerulonephritis and active vasculitis in a blood vessel. Antinuclear antibodies (ANA), anti-dsDNA, IgM rheumatoid factor and LE-cell test were negative. ANCA were positive with a perinuclear pattern of staining at a titre of 1/64. The antibodies were directed against myeloperoxidase. Treatment with cyclophosphamide and steroids resulted in a rapid recovery of renal function and the immunosuppressive drugs were tapered. The patient died two years later of myocardial infarction.

The sister presented at the age of 61 with a bilateral pleuritis sicca and angina. ANCA were negative, anti-dsDNA (Farr assay) were negative, LE cells were positive (class 5C), IgM rheumatoid factor was negative. ANCA were repeatedly positive with a perinuclear pattern of staining. Ten years after the first presentation she still requires azathioprine. There has been no evidence of renal disease.

Although the clinical presentation of disease in both siblings differed widely, the 77-year-old brother presented with an idiopathic extra-capillary proliferative glomerulonephritis whereas the sister suffered from a lupus like disease—both were found to have circulating antibodies directed against myeloperoxidase. Apart from the recent report in the Annals,1 there has been another communication on ANCA positive vasculitis in siblings: Ten Hacken et al reported Wegener’s granulomatosis in a mother and daughter, associated with anti-myeloperoxidase antibodies in the former and c-ANCA in the latter.2 We agree with Murphy et al, that a relatively rare disease like ANCA associated vasculitis within one family suggests a role for genetic factors, although environmental factors may also play a role. Whether family members from patients with ANCA associated disease have an increased prevalence of circulating ANCA, and if this is associated with an increased risk for developing connective tissue disease, remains to be clarified.

C F M FRANSEN
J C TER MAATEN
S J BORONTE
Department of General Internal Medicine,
Catharina Hospital,
Middenweg 100, 5622 EB Eindhoven,
The Netherlands


Table

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age (years)</th>
<th>Lumbar (L1-L4) BMD</th>
<th>Z-score</th>
<th>Femur Neck BMD</th>
<th>Z-score</th>
<th>Ward’s Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>16</td>
<td>0.760</td>
<td>-3.01</td>
<td>0.989</td>
<td>+0.11</td>
<td>0.661</td>
</tr>
<tr>
<td>M</td>
<td>21</td>
<td>0.867</td>
<td>-2.03</td>
<td>1.005</td>
<td>+0.28</td>
<td>0.880</td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>0.885</td>
<td>-1.42</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>25</td>
<td>0.915</td>
<td>-1.63</td>
<td>0.945</td>
<td>-0.09</td>
<td>0.766</td>
</tr>
</tbody>
</table>

BMD = Bone mineral density (g/cm²)
M = Male
F = Female
G-CSF in gold-induced aplastic anaemia.

S L Brown and E R Hill

doi: 10.1136/ard.53.3.213-a

Updated information and services can be found at:
http://ard.bmj.com/content/53/3/213.1.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/