Ankylosing spondylitis and monoclonal gammopathies

G Renier, J C Renier, M Gardembas-Pain, A Chevailler, M Boasson, D Hurez

Abstract
From 1960 to 1990, 557 patients with ankylosing spondylitis (428 men, 129 women) were diagnosed and indexed in the department of rheumatology. Monoclonal gammopathies were found in seven (five men, two women) patients (1.3%). With one exception, ankylosing spondylitis preceded monoclonal gammopathies by many years.

The distribution of the isotypes of the mlg found in these seven patients was striking when compared either with previous reports of an association between ankylosing spondylitis and monoclonal gammopathies or with local data on the epidemiology of monoclonal gammopathies: five patients with IgG, four of them of the λ (lambda) type, and two IgM, both of the κ (kappa) type were found; no patients with mlgA were recorded.

Two patients were HLA-B27 positive and had slight and transient monoclonal gammopathies, whereas three subjects were HLA-B27 negative and had important spikes, corresponding in two subjects to malignant diseases. This observation raises the question of whether the coexistence of HLA-B27 and ankylosing spondylitis might provide a protective action. Epidemiological studies are required to clarify such points.

The association of ankylosing spondylitis and monoclonal gammopathies has been reported occasionally,1–3 but the frequency of occurrence of the combination has not been determined. This association may be truly exceptional or merely unrecognised. To investigate the relation between the two diseases, we compared the clinical and laboratory findings in patients with monoclonal gammopathies and ankylosing spondylitis diagnosed at the University Hospital in Angers.

Patients and methods
Subjects presenting with ankylosing spondylitis and monoclonal gammopathies were selected by comparing hospital records of patients with each disease.

From 1960 to 1990, 557 patients with ankylosing spondylitis (428 men and 129 women) were diagnosed according to the usual criteria12 and indexed in the department of rheumatology. Three hundred and twenty three patients were admitted to this unit and serum protein electrophoresis was systematically performed.

The typing of monoclonal immunoglobulins was carried out by immunoelectrophoresis and, from 1985, by immunofixation when necessary. The measurement of IgG, IgA, and IgM was performed by radial immunodiffusion (Behring Laboratory) until 1981, then by immunonephelometry (Beckman analyser). The HLA phenotype was studied by microlymphocytotoxicity with special attention to HLA-B27.

Results
Monoclonal gammopathies were found in seven (five men and two women) of the 557 patients with ankylosing spondylitis. Table 1 summarises the clinical data and main biological features of these patients. For two patients monoclonal gammopathies were found when the patients were admitted to the department of rheumatology; conversely five patients with monoclonal gammopathies were found during admission to other units. The frequency of occurrence of monoclonal gammopathies was 0.62% (2/323) in patients with ankylosing spondylitis admitted to the rheumatology department and 1.26% (7/557) for the entire group.

In most patients ankylosing spondylitis preceded the monoclonal gammopathies by at least 20 years with one exception: ankylosing spondylitis and monoclonal gammopathies were simultaneously diagnosed in a 37 year old woman who was HLA-B27 negative.

The mlg were mlgG in five patients, four of the λ type and one κ. They were found in subjects aged 37, 57, 58, 72, and 78 years. In the other two subjects, the mlg were mlgM of the κ type, found in patients aged 71 and 79 years. Neither monoclonal IgA or light chain, nor biclonal gammopathy were found.

The mlg concentration was less than 5 g/l in four patients. Two of them were HLA-B27 positive and their mlgG was transient; it was discovered during infectious diseases (viral hepatitis and repeated respiratory tract infections respectively), and then disappeared into the associated polyclonal hypergammaglobulinaemia. The other two patients, who died before our study began, had not been phenotyped. No variations in the level of mlg were seen during their short follow up, thus we considered them as having monoclonal gammopathies of undefined significance.

The spike was greater than 20 g/l in three patients, all of them HLA-B27 negative. One was still unchanged after a six year follow up. The second was initially discovered without any associated feature of malignancy; however, an
aggressive myeloma was diagnosed two years later. The last spike corresponded to a Waldenström macroglobulinaemia.

Discussion
Our method was not efficient enough for a true epidemiological evaluation of the frequency of monoclonal gammopathies in patients with ankylosing spondylitis as some patients with either diagnosis might have been seen in the hospital without being identified as having either of these two diseases. This work is to our knowledge, however, the first attempt to assess a relation between monoclonal gammopathies and ankylosing spondylitis. Previous studies devoted to the immunological status in ankylosing spondylitis generally found increases of Ig levels, especially IgA. Unfortunately, they did not report the qualitative examination of serum samples from patients. Thus the only data available were either the cases occasionally recorded (summarised in table 2) or long term follow up of patients with ankylosing spondylitis. One of these papers only reported two myelomas in the group examined and another reported six deaths due to myeloma out of 14 106 patients with ankylosing spondylitis who had been treated with x radiation.

As previously reported, the west of France presents unusual characteristics with regard to the epidemiology of monoclonal gammopathies...
Ankylosing spondylitis and monoclonal gammopathies

Table 3 Isotypes of mg in patients from Angers who had a monoclonal gammopathy associated or not associated with ankylosing spondylitis (AS) compared with patients from elsewhere (data from previous reports listed in table 2 and from references 25 and 27)

<table>
<thead>
<tr>
<th>Angers</th>
<th>Elsewhere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without AS (%)</td>
<td>No with AS (%)</td>
</tr>
<tr>
<td>IgG</td>
<td>41</td>
</tr>
<tr>
<td>IgM</td>
<td>29</td>
</tr>
<tr>
<td>IgA</td>
<td>11</td>
</tr>
<tr>
<td>BJ</td>
<td>4</td>
</tr>
</tbody>
</table>

BJ = Bence Jones protein.

clonal gammopathies or with local data on the epidemiology of monoclonal gammopathies (table 3).27 Whereas up to seven mgA were previously recorded in 15 patients with an association of ankylosing spondylitis and monoclonal gammopathies, none was present in our patients. Our patients with ankylosing spondylitis actually had mgG rather than mgA. The higher occurrence of mgG might, however, be a random finding due to the small number of subjects studied in this work.

Interestingly, mgM was discovered in two subjects, whereas none had been reported previously. This discrepancy is probably due to a bias as previous data were obtained from papers focusing on selected conditions such as mgG or mgA monoclonal gammopathies of undefined significanceor, from 1974, myeloma.

Another surprising feature was that four patients with mg (all of them mgG) were of the λ type, which is the opposite of what is seen in uncomplicated monoclonal gammopathies. This may be related to the amyloidosis sometimes found in patients with ankylosing spondylitis.28 29 In immunoproliferative disorders, this anomaly is more often due to light chains of the λ type. The amyloid component observed in chronic inflammations such as ankylosing spondylitis, however, does not have the same biochemical structure.30 31 Moreover none of our patients had symptoms suggestive of amyloidosis. The investigation for amyloidosis was negative in all but one of the previously reported subjects,1-5 in whom the association of ankylosing spondylitis, ulcerative colitis, and Bence Jones protein made the real source of amyloidosis uncertain.1

In two of our seven patients mgG disappeared within two years. This finding was unexpected as previous studies12-35 had shown that less than 4% of monoclonal gammopathies were transient. This discrepancy is not due to methodological reasons. Conversely, it is noteworthy that at least four of our seven patients, including those with transient monoclonal gammopathies, had infectious diseases when their monoclonal gammopathies were discovered.

The two patients who had a slight and transient monoclonal gammopathy were HLA-B27 positive whereas the three subjects who were HLA-B27 negative had important spikes corresponding, in two subjects, to malignant diseases. Although inconsistent with reports on the relationships between monoclonal gammopathies and HLA alleles,36-38 this observation raises the questions of the possible part played by the coexistence of HLA-B27 and ankylosing spondylitis. Among previously reported cases of monoclonal gammopathies associated with ankylosing spondylitis, the HLA phenotype was only available for five patients (table 2). Although three of these were HLA-B27 positive and had a slowly progressing myeloma, to date most patients who had benign monoclonal gammopathies or monoclonal gammopathies of undefined significance were HLA-B27 positive and most patients who were HLA-B27 negative had a malignant gammopathy. Patients with ankylosing spondylitis who

<table>
<thead>
<tr>
<th>Gammopathies</th>
<th>Bone marrow aspiration</th>
<th>Diagnosis, evolution, and other pathological conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Lymphocytes, 52%; plasma cells, 3%</td>
<td>Waldenström macroglobulinaemia; alcoholic cirrhosis leading to death; arteritis; bilateral hip arthroplasties</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>MGUS unchanged six months later; cardiopathy (acute pulmonary oedema leading to death, aortic stenosis, streptococcal endocarditis); chronic respiratory insufficiency; hypertension; maturity onset diabetes mellitus</td>
</tr>
<tr>
<td>High</td>
<td>Normal</td>
<td>BMG after infection (respiratory tract infection; disappearance); chronic obstructive lung disease, surinfections leading to death; cardiopathy (atrial fibrillation, left sided heart failure); maturity onset diabetes mellitus</td>
</tr>
<tr>
<td>Low IgA</td>
<td>Lymphocytes, 15%; plasma cells, 2%; no abnormality</td>
<td>MGUS during viral keratitis, unchanged six years later</td>
</tr>
<tr>
<td>High IgM</td>
<td>Low</td>
<td>MGUS during urinary tract infection, unchanged two years later; septic shock leading to death; atrioventricular block (pacemaker); hypertension</td>
</tr>
<tr>
<td>High</td>
<td>BMG after hepatitis, disappearance; chronic viral (non-B) hepatitis</td>
<td></td>
</tr>
<tr>
<td>Normal—low</td>
<td>Plasma cells, 33%; atypical</td>
<td>MGUS leading to myeloma after two years; asthma</td>
</tr>
</tbody>
</table>

essentially a high percentage of mgM). Thus the 30 000 people studied by Saleun in the department of Finisterere26 are the most convenient control group. In this study, the frequency of monoclonal gammopathies was 1.35% for men and 0.86% for women. In comparison, our evaluation of the frequency of monoclonal gammopathies (1.26%) was similar when considering the entire group of patients with ankylosing spondylitis. It was only 0.62% among the patients studied during their admission to the rheumatology department, however, so that a lower frequency of monoclonal gammopathies in patients with ankylosing spondylitis cannot be definitely excluded.

In the Finisterian population, the frequency increased with age; myeloma and Waldenström macroglobulinaemia accounted for 12.6 and 9% of monoclonal gammopathies respectively. Our findings are consistent with these results.

The distribution of the isotypes of the mg found in our seven patients was striking when compared either with previous reports of the association of ankylosing spondylitis and mono-
are HLA-B27 negative may therefore be at higher risk than those who are HLA-B27 positive with regard to monoclonal gammopathies. Alternatively, if the occurrence of monoclonal gammopathies was lower in patients with ankylosing spondylitis and HLA-B27 might provide a protective action. Epidemiological studies are required to clarify such points.

We are indebted to Dr R Perry and Mr K Malkani for reviewing the translation of this manuscript.

Ankylosing spondylitis and monoclonal gammopathies.

G Renier, J C Renier, M Gardembas-Pain, A Chevailler, M Boasson and D Hurez

doi: 10.1136/ard.51.8.951

Updated information and services can be found at:
http://ard.bmj.com/content/51/8/951

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Ankylosing spondylitis (417)
- Calcium and bone (725)
- Connective tissue disease (4253)
- Degenerative joint disease (4641)
- Immunology (including allergy) (5144)
- Musculoskeletal syndromes (4951)
- Rheumatoid arthritis (3258)
- Epidemiology (1367)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/