Heredofamilial deficiency of monocyte esterase in patients with rheumatoid arthritis

A L Bell, G M Markey, M D McCaig, D Middleton, J A McCormick, A G Wilson, T C M Morris

Abstract

Deficiency of the monocyte ectoenzyme non-specific esterase is described in a heredo-familial pattern in four patients with rheumatoid arthritis. No association with HLA status or rheumatoid factor seropositivity was found.

Cytochemical staining for the ectoenzyme\(^1\) monocyte serine esterase or non-specific esterase has become a generally recognised laboratory technique for the identification of cells of the mononuclear phagocyte system. Five carboxyl esterase isoenzymes capable of reacting with standard substrates have been described in monocytes.\(^2\) Monocyte esterase deficiency in blood monocytes or their circulating precursors from patients with rheumatoid arthritis (RA) has been described,\(^3\) though no suggestion of familial deficiency has been made. We have previously reported an association between familial monocyte esterase deficiency and malignant disease.\(^4,5\) We therefore carried out family studies in a small number of patients with coexistent RA and monocyte esterase deficiency to examine the possibility that the trait is familial, and to examine relations with arthritis, HLA status, and rheumatoid factor.

Patients and methods

In a large outpatient survey seven patients with rheumatoid arthritis were found to have monocyte esterase deficiency,\(^6\) three of whom were selected for study. An additional monocyte esterase deficient patient identified during hospital admission was also selected. All patients fulfilled the diagnostic criteria for RA\(^6\) and three were seropositive for rheumatoid factor. One seropositive patient also had psoriasis and one had severe nodular systemic RA with active necrotising cutaneous vasculitis. No other patient had nodules. Repeat blood samples were stained for up to six months after identification and the deficiency was shown to be constant.

Family members were initially contacted by index patients. After informed consent, each patient and their relative were examined for evidence of arthritis and provided a blood sample for monocyte cytochemistry, tissue typing, and rheumatoid factor assay.

RHEUMATOID FACTOR

Standard RA latex (Wellcome Laboratories, Beckenham, Kent, United Kingdom) and RA particle agglutination test kits (Serodia–RA, Fujirebio, Japan) were used for the determination of rheumatoid factor.

Results

Thirty seven subjects were studied (33 family members and four propositi). Twelve (32\%) showed pronounced monocyte esterase deficiency and six (16\%) partial deficiency. The family pedigrees (fig) showed enzyme deficiency in siblings and relatives of both sexes. Of the 12 offspring of the four propositi (two men, two women), 10 were investigated for monocyte esterase deficiency. Of these 10, three had complete and three partial monocyte esterase deficiency. Of the 21 sibs of the propositi, 18 were investigated of whom seven had total or partial monocyte esterase deficiency. Of the eight parents of the propositi, only three were available for testing; two refused testing and the only one tested had monocyte esterase deficiency. These findings are consistent with autosomal dominant inheritance.
Heredofamilial deficiency of monocyte esterase in patients with rheumatoid arthritis

One family showed a strong history of autoimmune rheumatic disease (fig), and rheumatoid factor positivity was found in two affected relatives (one with RA) and three index patients. Tissue typing showed that all index patients were HLA-DR4 positive and one was homozygous. There was no suggestion of coinheritance of HLA haplotypes with monocyte esterase deficiency, and no association of enzyme deficiency with the presence of rheumatoid factor.

Discussion

Cytocentrifuge preparations of mononuclear cells obtained over Ficoll-Hyphaque from patients without haematological diseases contain only lymphocytes and monocytes. The characteristic morphology of mature mononuclear populations seen on monocyte esterase stained slides (whether monocyte esterase positive or negative) and Wright's stained slides is sufficient for the identification of most of this population. It has previously been shown that the cells which have a typical morphology on Wright's stained preparations but are monocyte esterase negative are monocytes and have positive reactions with antibodies to muramidase and α-1-trypsin. The identification of monocyte esterase deficiency in this study is therefore valid. The study showed heredofamilial monocyte esterase deficiency occurring in patients with RA. In agreement with other hereditary esterase deficiencies an autosomal pattern of inheritance was found.

Hurst et al described a decrease in the proportion of esterase positive monocytes correlating with a decrease in C3b mediated phagocytosis in 13 patients with RA who had active vasculitis or extra-articular disease manifestations. Patients with inactive vasculitis or multiple nodules did not show a discrepancy. The appearance of large monocyte esterase negative cells during active disease appears to correlate with the findings of Horwitz and Steagall, who studied large atypical mononuclear cells occurring in the peripheral blood of patients with rheumatic diseases. The latter study showed that one of nine of these immature cells became mature monocytes. Our findings are clearly different from and should not be confused with the findings of these studies. Only mature monocytes were considered in our study; the criteria for diagnosis of severe monocyte esterase deficiency was that greater than 85% of mature monocytes were esterase negative, the deficiency was constant (not fluctuating over months or years), and it was clearly a familial trait.

In our previously reported survey, the occurrence of severe monocyte esterase deficiency was 0.8% (four of 474 subjects) in the normal population. In this survey 3172 patients with non-malignant diseases and 808 patients with malignant diseases were investigated. Of the group with non-malignant diseases only patients with renal disease (n=291) showed a significant increase (3.8%; p=0.0112) in the incidence of the anomaly; 50% of the monocyte esterase deficient patients had renal disease of autoimmune aetiology. Only two groups of patients with autoimmune disease were well...
defined, namely those with RA (n=218) and those with autoimmune haematological diseases (n=22). In each of these groups there was a trend towards an increased incidence of the anomaly (3.2% (p=0.0547) and 9% (p=0.0506) respectively). There was also a significant increase (6.2%; p<0.001) in monocyte esterase deficiency in patients with lymphoproliferative malignancies. In view of the well described association between autoimmune diseases, including RA, and lymphoproliferative malignancy, the findings of an increased association or trend towards an increased association of this trait (which has been familial whichever group of patients were investigated) with these diseases in our survey was striking, and may suggest a link between heredofamilial monocyte esterase deficiency and these diseases.

The familial trait could represent an additional genetic influence on the development or expression of RA. In this study it did not closely relate to the possession of HLA-DR4. In our outpatient survey of seven monocyte esterase deficient patients with rheumatoid arthritis, two had systemic vasculitis (29%) compared with 11 of 211 monocyte esterase positive RA patients (5%). It is therefore possible that the enzyme deficiency may predispose to severe systemic involvement in RA.

The biological role of monocyte esterase is uncertain. In studies with a specific monocyte esterase inhibitor Oertel et al suggested that the enzyme is required for spontaneous monocyte cytotoxicity to K562 cell lines. No effects on monocyte adhesion, spreading, or latex particle phagocytosis were found. Moreover, esterase negative monocytes have been shown to be unable to lyse K562 cells when stimulated by lactoferrin. A possible link between monocyte esterase deficiency and defective monocyte C3b mediated phagocyte function has been outlined above.

It is possible that familial monocyte esterase deficiency predisposes patients with RA to lymphoproliferative malignancy. Markey et al have shown an increased occurrence of the deficiency in patients with non-Hodgkin’s lymphoma and B cell chronic lymphocytic leukaemia, haematological malignancies found with increased occurrence in RA. It has been suggested that diminished natural killer cell cytotoxicity in RA predisposes to the development of B cell chronic lymphocytic leukaemia and non-Hodgkin’s lymphoma; these papers did not consider monocyte cytotoxicity.

Finally, the possibility exists that monocyte esterase deficiency is merely a coincidental finding in these patients with RA. Further studies to define the functional consequences for monocytes of heredofamilial esterase deficiency in patients with RA have begun.

We are grateful to Professor N Nevin, Professor of Medical Genetics, The Queen’s University of Belfast for helpful comments on the family pedigrees; Mr T Ferguson and other staff of the laboratories, Musgrave Park Hospital for valuable technical assistance; and Mrs Moya Maguire for efficient preparation of the manuscript.

Heredofamilial deficiency of monocyte esterase in patients with rheumatoid arthritis.

doi: 10.1136/ard.51.5.668

Updated information and services can be found at:
http://ard.bmj.com/content/51/5/668

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/