Inhibition by prostaglandin E$_1$ and E$_2$ of 1,25-dihydroxyvitamin D$_3$ synthesis by synovial fluid macrophages from arthritic joints

M E Hayes, A Rai, R G Cooper, D Bayley, A J Freemont, E B Mawer

Abstract

Previous work has shown that renal metabolism of 25-dihydroxyvitamin D$_3$ (25(OH)D$_3$) to the active metabolite, 1,25-dihydroxyvitamin D$_3$ (1,25(OH)$_2$D$_3$) is stimulated by prostaglandin E$_2$ and inhibited by acetylsalicylate (aspirin). As prostaglandins are primary inflammatory mediators and synovial fluid macrophages are known to synthesise 1,25(OH)$_2$D$_3$ in vitro, the effects of prostaglandin E$_1$, prostaglandin E$_2$, and aspirin on the metabolism of 25(OH)D$_3$ by cells cultured from synovial fluid of patients with inflammatory arthritis were investigated. Most cultures contained non-proliferating macrophages which formed 1,25(OH)$_2$D$_3$; however, two of 13 cultures contained colonies of rapidly proliferating fibroblast-like cells which formed 24,25(OH)$_2$D$_3$ (24,25(OH)$_2$D$_3$).

Prostaglandin E$_1$ and prostaglandin E$_2$ (0.01–10 μmol/l) induced marked inhibition of 1,25(OH)$_2$D$_3$ synthesis (up to 94%) in a dose dependent manner after preincubations of 24 hours but not over straightforwards six hour incubations. Exposure of macrophages to aspirin (1 μmol/l–1 mmol/l) for 24 hours did not affect 1,25(OH)$_2$D$_3$ synthesis unless the cells had been preincubated with lipopolysaccharides, in which instance 1 mM aspirin increased 1,25(OH)$_2$D$_3$ synthesis. Lipopolysaccharide is a macrophage activating factor which stimulates macrophages to form 1,25(OH)$_2$D$_3$, and it also induces prostaglandin synthesis which would be inhibited by aspirin. Taken together these results suggest that prostaglandin E$_1$ and prostaglandin E$_2$ synthesised by macrophages may act in an autocrine manner to attenuate the ability of macrophage activating factors, such as lipopolysaccharide, to stimulate 1,25(OH)$_2$D$_3$ synthesis. Prostaglandins synthesised by other inflammatory cells may also inhibit 1,25(OH)$_2$D$_3$ synthesis in a paracrine manner. In contrast, prostaglandin E$_2$ and aspirin had limited effects on fibroblast 24,25(OH)$_2$D$_3$ synthesis.

This study shows that the effects of prostaglandin E$_1$, prostaglandin E$_2$, and aspirin in macrophages contrast with those previously reported for the renal 25(OH)D$_3$-1α-hydroxylase, where prostaglandin E$_2$ stimulated and aspirin inhibited enzyme activity. These results further emphasise that synthesis of 1,25(OH)$_2$D$_3$ in non-renal sites is independently regulated, which is consistent with it having an immunological role at a local level rather than playing a part in systemic calcium homeostasis.

Vitamin D$_3$, which is formed in the skin or provided by the diet, is rapidly hydroxylated to 25-dihydroxyvitamin D$_3$ (25(OH)D$_3$) in the liver and released into the blood where it is carried by a specific vitamin D binding protein. 25(OH)D$_3$ has limited biological activity but instead provides a serum pool available for secondary hydroxylation to 24,25-dihydroxyvitamin D$_3$ (24,25(OH)$_2$D$_3$) and 1,25-dihydroxyvitamin D$_3$ (1,25(OH)$_2$D$_3$) the most biologically active metabolite with respect to calcium metabolism and immune function.1–4

The two major cell types responsible for the synthesis of 1,25(OH)$_2$D$_3$ are endothelial cells of the proximal renal tubule and activated tissue macrophages.

Control of renal 25(OH)D$_3$ metabolism is primarily linked with regulation of intestinal calcium absorption and homeostasis of blood calcium levels. The predominant renal metabolite formed during normocalcaemia is 24,25(OH)$_2$D$_3$, which does not itself appear to modulate blood calcium. However, when blood calcium levels decrease parathyroid hormone is secreted to promote synthesis of 1,25(OH)$_2$D$_3$, which stimulates intestinal calcium absorption.1 2

Studies on the extrarenal metabolism of 25(OH)D$_3$, by cultured macrophages obtained from patients with sarcoidosis,5 tuberculosis,6 various forms of inflammatory arthritis,7 8 or following peritonitis9 have shown that 1,25(OH)$_2$D$_3$ is always the primary product. Monocyte macrophages maintained in short term culture may, however, in addition to fibroblasts cultured from skin or synovial fluid, form 24,25(OH)$_2$D$_3$.8 10 Synthesis of 1,25(OH)$_2$D$_3$ by macrophages is stimulated by macrophage activating factors, including γ interferon,11 bacterial lipopolysaccharides,12 and tumour necrosis factor α,13 and is inhibited by hydrocortisone,14 whereas 24,25(OH)$_2$D$_3$ synthesis by fibroblasts is stimulated by 1,25(OH)$_2$D$_3$.8 In a range of diseases, including arthritis, it has been shown that extrarenal synthesis of 1,25(OH)$_2$D$_3$ is substrate dependent and is poorly regulated, in contrast with renal synthesis.14–16

It has also been shown that the locally synthesised inflammatory mediator prostaglandin E$_2$ stimulates renal 1,25(OH)$_2$D$_3$ synthesis and that aspirin, a prostaglandin inhibitor, reduces 1,25(OH)$_2$D$_3$ synthesis in vitro.17 In many forms of arthritis, locally synthesised prostaglandins are believed to be primary mediators of inflammation and associated tissue damage, including periarticular bone loss, whereas aspirin is commonly used as
Inhibition of 1,25(OH)\(_2\)D\(_3\) synthesis by prostaglandin E

Patients and methods

Samples of synovial fluid were obtained from 13 patients with inflammatory arthritic knee joint effusions. Most of the patients were assigned to well recognised diagnostic groups on the basis of clinical criteria, the total and differential white cell counts on synovial fluid, and appropriate immunological, radiological, and crystallographic investigations. Eight of the patients had rheumatoid arthritis and two had reactive arthritis. The other three patients had arthropathies that could not be assigned to a specific diagnostic group and were classified as non-specific inflammatory arthritis.

Cells were harvested from synovial fluid (10–20 ml) by centrifugation at 2000 g for 15 minutes followed by resuspension in 10–20 ml of RPMI 1640 culture medium containing 10% newborn calf serum, 2 mmol/l glutamine, 50 IU/ml penicillin, and 50 µg/ml streptomycin (Gibco). Cells were then plated as 0.5 ml aliquots into six or 24 well culture dishes (Imperial Laboratories) containing 2 or 10 ml of the RPMI 1640 culture medium respectively. Following one to two days culture in an atmosphere of 95% air, 5% carbon dioxide at 37°C the non-adherent polymorphs, lymphocytes, and monocytes were decanted, leaving adherent macrophages in most samples, mixed macrophages and fibroblasts in one culture, and fibroblasts in another. The macrophages were cultured for three to 42 days and the fibroblasts for 24 to 26 days in fresh RPMI 1640 medium which was routinely changed twice a week (see figure legends for details). Some of the macrophages were also cultured in medium containing lipopolysaccharides (20 µg/ml) added to maintain the cells in an activated state and to increase the rate of 1,25(OH)\(_2\)D\(_3\) synthesis. The experiments initially examined the ability of macrophages to synthesise 1,25(OH)\(_2\)D\(_3\) after six and 24 hours exposure to prostaglandin E\(_1\) or prostaglandin E\(_2\), whereas other experiments tested the effects of aspirin on the ability of macrophages to synthesise 1,25(OH)\(_2\)D\(_3\) and fibroblasts to form 24,25(OH)\(_2\)D\(_3\).

The assays of 25(OH)\(_2\)D\(_3\) metabolism were carried out in situ in a humidified atmosphere of 5% carbon dioxide in 95% air at 37°C. Incubations were carried out in triplicate for each concentration of test substance and were terminated by mixing the cells and medium with 3 ml of chloroform and 2 ml of methanol. The extracts were centrifuged at 500 g for 20 minutes at 4°C and the lower chloroform layer containing vitamin D\(_3\) metabolites was removed, dried under a stream of nitrogen gas, reconstituted in 1 ml of ethanol and stored at −20°C. Each chloroform extract was analysed on a manual injection normal phase high performance liquid chromatography system, developed with a mobile phase of n-hexane-propan-2-ol-methanol (110: 6: 4 v/v) at 2 ml/min using a Model 600A high performance liquid chromatography solvent delivery pump (Waters Associates) and a Zorbax-Sil column (25 cm x 4.6 mm, Du Pont). For each analysis eluent fractions were collected using a Model 202 fraction collector (Gilson) and the radioactivity associated with the substrate, 24,25(OH)\(_2\)D\(_3\), or 1,25(OH)\(_2\)D\(_3\) was estimated using a 1217 Rackbeta liquid scintillation counter (LKB Wallac). Standard 25(OH)\(_2\)D\(_3\), 24,25(OH)\(_2\)D\(_3\), and 1,25(OH)\(_2\)D\(_3\) and their tritiated forms were also chromatographed and the retention times of these markers determined by ultraviolet absorption at 265 nm using a Model 440 absorbance detector (Waters Associates) with an Ar 25 linear chart recorder (Pye Unicam), or by liquid scintillation counting.

For each experiment parallel cultures of cells were trypsinised and counted in triplicate using a haemocytometer and the values used to normalise 25(OH)\(_2\)D\(_3\)-1α-hydroxylase activity for cell numbers. Cytocentri fugation preparations of trypsinised cells and cells fixed in situ with methanol were stained with Giemsa. These preparations were used to confirm that the cells were macrophages and to check for the presence of fibroblast-like cell colonies.

Synthesis of 1,25(OH)\(_2\)D\(_3\) and 24,25(OH)\(_2\)D\(_3\) is expressed as pmol per hour per 10\(^6\) cells (means (SEM) of triplicate determinations). Statistical analysis was carried out using Student's t test with significance expressed as NS (not significant), p<0.05 (*), or p<0.01 (***) compared with controls.

Results

Most cultures were characterised by the presence of non-proliferating cells which initially had the morphology of mononucleated monocytes and immature macrophages, but after several days in culture had the appearance of larger, more mature macrophages, some of which were multinucleated (more than three nuclei). Addition of lipopolysaccharide to the macrophage cultures induced a more elongated morphology, but it did not appear to alter the cell number or the proportion of multinucleated cells present. Cultures from one sample contained rapidly proliferating colonies of fibroblast-like cells in addition to macrophages, whereas another was predominantly fibroblasts. All the macrophage cultures formed 1,25(OH)\(_2\)D\(_3\) whereas the fibroblasts formed 24,25(OH)\(_2\)D\(_3\), an anti-inflammatory drug. As a result of the effects of prostaglandin E\(_2\) and aspirin on renal 25(OH)\(_2\)D\(_3\)-1α-hydroxylase, the primary aim of this study was to assess the effects of these factors on the enzyme expressed by arthritic joint macrophages. It is difficult to isolate macrophages from arthritic synovium; however, it is relatively straightforward to isolate cells from synovial fluid which actively synthesise 1,25(OH)\(_2\)D\(_3\) in culture. We therefore cultured macrophages from synovial fluid and investigated the effects of prostaglandin E\(_1\), prostaglandin E\(_2\), and aspirin on 1,25(OH)\(_2\)D\(_3\) synthesis. We also compared the effects of these substances on 24,25(OH)\(_2\)D\(_3\) synthesis by synovial fluid fibroblasts.
isolation following absorbance with tritium.

Figure 1 shows high performance liquid chromatography results for metabolism of 25(OH)D₃ labelled with tritium by macrophages cultured from the synovial fluid of a patient with non-specific inflammatory arthritis. The cells were incubated in medium for six hours following 14 days of culture in autologous synovial fluid, in normal RPMI 1640 culture medium, or in medium which contained 20 μg/ml lipopolysaccharide for the last five days. The macrophages cultured in autologous synovial fluid actively synthesised 1,25(OH)₂D₃, whereas those cultured in the absence of lipopolysaccharides synthesised little 1,25(OH)₂D₃. Although lipopolysaccharides typically increase 25(OH)D₃-1α-hydroxylase activity, macrophages from some samples cultured in the absence of lipopolysaccharides synthesised considerable amounts of 1,25(OH)₂D₃, indicating that the cells were probably activated (compare figs 2 and 3).

Figure 2 shows that prostaglandin E₁ and prostaglandin E₂ inhibited 1,25(OH)₂D₃ synthesis in lipopolysaccharide activated macrophages in a dose dependent manner after a preincubation of 24 hours. The macrophages

Figure 2 Effects of prostaglandin E₁ (○ – ○) and prostaglandin E₂ (● – ●) after 24 hours on 1,25-dihydroxyvitamin D₃ synthesis by macrophages isolated from the synovial fluid of patients with (a) non-specific inflammatory arthritis, (b) rheumatoid arthritis, or (c) reactive arthritis. Assays of 25-hydroxyvitamin D₃-1α-hydroxylase activity were carried out for six hours using 0-15-0-35 × 10⁶ macrophages per incubation, which had been exposed to 20 μg/ml lipopolysaccharide for 5, 5, 4, 5, or 14 days and cultured for a total of 15, 20, 6, 13, or 15 days respectively in descending order. Values are the mean (SEM) of three determinations (\(p<0.05 \); **\(p<0.01 \)).
Inhibition of synthesis by prostaglandin E1

exposed to prostaglandin E1 were from one patient with reactive arthritis and one with a non-specific inflammatory arthritis, whereas those exposed to prostaglandin E2 were all from patients with active rheumatoid arthritis. Prostaglandin E2 also inhibited 1,25(OH)2D3 synthesis in cells from two patients with rheumatoid arthritis that had not been exposed to lipopolysaccharides in the latter experiments, synthesis was reduced from 1·81 (0·05) and 2·44 (0·19) to 0·7 (0·15) (p<0·05) and 0·95 (0·28) (p<0·01) pmol 1,25(OH)2D3 per hour per 106 cells respectively. Prostaglandin E2, however, did not affect 1,25(OH)2D3 synthesis in straightforward six hour incubations (fig 3).

Figure 3 also shows the almost linear synthesis of 1,25(OH)2D3 over the six hour incubation period used. In a further study using fibroblasts in which 25-hydroxyvitamin D3 24-hydroxylase had been induced by treatment with 10 mM 1,25(OH)2D3 for three days, 1 µM prostaglandin E2 (24 hours) did not affect 24,25(OH)2D3 synthesis (64·4 (1·45) pmol per hour per 106 cells) compared with controls (59·5 (1·99) pmol per hour per 106 cells).

Figure 4 shows that exposure to synovial fluid macrophages from patients with rheumatoid arthritis to aspirin for 24 hours did not affect 1,25(OH)2D3 synthesis, whereas 1 mM aspirin significantly increased 1,25(OH)2D3 synthesis (p<0·01) by cells that had been exposed to lipopolysaccharides. In another experiment using mixed cultures of lipopolysaccharides activated macrophages and fibroblasts (0·2 × 106 cells per incubation), 1 mM aspirin also increased 1,25(OH)2D3 synthesis from 0·02 to 0·85 (0·08) pmol per hour per incubation (p<0·01) and reduced 24,25(OH)2D3 synthesis from 0·72 (0·06) to 0·55 (0·02) pmol per hour per incubation (NS). Neither aspirin (1 µmol/l–1 mmol/l) nor lipopolysaccharide, however, altered the rate of 24,25(OH)2D3 synthesis by fibroblasts from a patient with rheumatoid arthritis where control cells synthesised 5·0 (0·6) pmol per hour per 106 cells.

The ability of the cells to metabolise 25(OH)D3 with respect to the type of arthritis, clinical treatment, or number of days in culture was not examined due to the small number of samples.

Discussion

This study confirms observations made in our previous studies that macrophages cultured from the synovial fluid of patients with various forms of arthritis can synthesise 1,25(OH)2D3, whereas fibroblast-like cells synthesise 24,25(OH)2D3.8 Our previous studies have also shown that lipopolysaccharides increase and maintain high rates of 1,25(OH)2D3 synthesis.8 In this study a number of the samples expressed high rates of 25(OH)D3-1α-hydroxylase activity (>8 pmol per hour 106 cells) without previous exposure to lipopolysaccharides, indicating that the cells may already have been activated before culture. It was also shown that macrophages cultured in autologous synovial fluid are capable of synthesising 1,25(OH)2D3.

These studies have clearly shown that 1 µmol/l concentrations of prostaglandin E1 and prostaglandin E2 inhibit 1,25(OH)2D3 synthesis by over 60% in untreated and in lipopolysaccharide activated macrophages in vitro after 24 hour preincubations, but not over straightforward six hour incubations. In contrast, 1 mM aspirin, an inhibitor of prostaglandin synthesis, significantly increased 1,25(OH)2D3 production by lipopolysaccharide activated macrophages but not by untreated cells. Lipopolysaccharides are known inducers of prostaglandin E2 synthesis in monocyte macrophages,18,19 thus it is likely that lipopolysaccharide induced prostaglandin E2 synthesis in the macrophages may have attenuated the ability of lipopolysaccharides to stimulate 25(OH)D3-1α-hydroxylase activity in an autocrine manner. The effects of aspirin in lipopolysaccharide activated macrophages may therefore have been mediated by its ability to inhibit prostaglandin E2 synthesis. In the studies described by Fidler et al the concentrations of prostaglandin E2 achieved after 18 hour incubations of 105 human monocytes exposed to 1 µg/ml lipopolysaccharide were 30–40 nmol/l.19 Such concentrations were within the range that inhibited 1,25(OH)2D3 synthesis in this study.

The effects of prostaglandin E1, prostaglandin E2, and aspirin in macrophages are in complete contrast with those previously reported for the renal 25(OH)D3-1α-hydroxylase, where prostaglandin E2 stimulated and aspirin inhibited enzyme activity.17 This further emphasises the different functions (calcium homeostasis v immunoregulation) and regulatory

Figure 4 Effects of aspirin on 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) synthesis by macrophages isolated from the synovial fluid of three patients with rheumatoid arthritis. Assays of 25(OH)D3-1α-hydroxylase activity were carried out for 24 hours using 0·15–0·45 × 106 macrophages per incubation following culture in the presence of 20 µM lipopolysaccharide for 14 days (■–■) or in its absence (○–○). The cells had been cultured for a total of 14, seven, and six days respectively in descending order and the values are the mean (SEM) of three determinations (**p<0·01).
factors (parathyroid hormone γ cytokines) for the two 25(OH) D3-1α-hydroxylases. These two studies also indicate that prostaglandins and aspirin have limited effects on 25(OH) D3-24-hydroxylase activity in cultured synovial fluid fibroblast-like cells.

There is now growing evidence that 1,25 (OH)2 D3 may have important immunoregulatory functions in a number of clinical disorders.2,4 For example, specific receptors for 1,25(OH)2D3 are present in normal human monocytes and in activated lymphocytes.20 The observations that synovial fluid macrophages synthesise 1,25(OH)2D3 and that both peripheral blood lymphocytes22 and synovial tissue derived fibroblasts3 from patients with rheumatoid arthritis express its receptors is consistent with 1,25(OH)2D3 also having an immunological part to play in joint disease. Furthermore, many of the reported receptor mediated effects of 1,25(OH)2D3 may be relevant to arthritis; these include inhibition of both B and T lymphocyte proliferation and interleukin 2 production by T lymphocytes.3 4 24 1,25(OH)2D3 also promotes differentiation of monocytes into macrophages and the fusion of macrophages to multinucleated giant cells with bone resorbing activity.25 26 This is in addition to the known ability of 1,25(OH)2D3 to promote osteoclastic bone resorption and to inhibit osteoblast collagen synthesis.27

Prostaglandins, particularly prostaglandin E1 and prostaglandin E2 secreted by polymorphs, monocyte macrophages and fibroblasts,18 19 28 29 are believed to play a primary part in acute arthritic inflammatory episodes in two ways. Firstly, prostaglandin E2 affects the increased vascular permeability which allows the entry of proteins, albumin, and fibrinogen into the joint and synovial fluid. Secondly, prostaglandin E2 has been shown to inhibit various aspects of the immune response, including lymphocyte proliferation, lymphokine secretion, macrophage collagenase synthesis, and the activity of natural killer cells and macrophages.30 Use of prostaglandin synthesis inhibitors, however, has indicated that prostaglandins may not play a significant part in the long term progression of arthritis.18 If this is so then prostaglandin E2 may inhibit 1,25(OH)2D3 synthesis during acute inflammatory episodes when concentrations are increased. During the quiescent phase of the disease, however, there may still be enough active macrophages present in the synovium that can synthesise 1,25(OH)2D3.16 This may be important for immune function and it may also promote bone resorption and contribute to the development of the localised periarticular osteoporosis that is associated with chronic arthritis.31 Control of 1,25(OH)2D3 synthesis by prostaglandin cytokine drugs, and free radicals known to be present within the local microenvironment of the diseased joint, and elucidation of the mode of action of 1,25(OH)2D3 in the arthritic joint clearly warrant further study.

The North West Regional Health Authority and the British Arthritis and Rheumatism Council are thanked for their support of this study. We are also grateful to P Lockey and J Denton for technical assistance. Dr M R Usukovski (Hoffmann-LaRoche, NJ, USA) kindly provided the standards for 25(OH)D3, 24,25(OH)2D3, and 1,25(OH)2D3.

26 Bar-Shavit Z, Terkelbaum S L, Reitman P, et al. Induction of monocyte differentiation and bone resorption by 1,25-
Inhibition by prostaglandin E1 and E2 of 1,25-dihydroxyvitamin D3 synthesis by synovial fluid macrophages from arthritic joints.

M E Hayes, A Rai, R G Cooper, D Bayley, A J Freemont and E B Mawer

doi: 10.1136/ard.51.5.632