Inhibition of neutrophil oxidant secretion by D-penicillamine: scavenging of H₂O₂ and HOCl

Martin J Ledson, Roger C Bucknall, Steven W Edwards

Abstract
D-Penicillamine inhibited oxidant secretion from human neutrophils after activation by the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe), as assessed by luminol dependent chemiluminescence. In contrast, this drug had little effect on either intracellular oxidant production or lucigenin dependent chemiluminescence activated by the same agonist. The drug was shown to scavenge both H₂O₂ and HOCl in a cell free luminol chemiluminescence system, though its ability to scavenge HOCl was greater than that for H₂O₂. Both these oxidants could oxidise the drug, but again HOCl was more potent than H₂O₂. When D-penicillamine was oxidised by exposure to H₂O₂ it could no longer serve as a scavenger of secreted oxidants from neutrophils. These data suggest that in vivo the preferential scavenging of HOCl may be important under pathological conditions where secreted myeloperoxidase may be functional.

D-Penicillamine is a slow acting drug used in the treatment of rheumatoid arthritis, but despite its widespread use its biological mode of action remains obscure. Several mechanisms have been proposed to explain its efficacy, including effects of collagen metabolism,1 immunopathological effects in the presence of copper,2 superoxide dismutase activity,3 and ability to scavenge H₂O₂ and HOCl,4,4,6,7 both of which are products of activated phagocytes. Furthermore, a more direct inhibitory effect of this drug on the activity of the neutrophil enzyme myeloperoxidase has been proposed as it can promote the formation of compound III, which is inactive in the generation of HOCl.7

In view of the fact that neutrophils within inflamed joints of patients with rheumatoid arthritis have been activated to secrete reactive oxidants8-10 and myeloperoxidase,11,12 one explanation for the therapeutic activity of D-penicillamine may reside in its ability to scavenge the neutrophil products H₂O₂ and HOCl within such joints. However, only modest inhibitory effects of this drug on neutrophil dependent oxidant production have been described. For example, after stimulation of neutrophils by phorbol myristate acetate, D-penicillamine at 0·1 mmol/l only inhibited the activated chemiluminescence by 20%,13 and when opsonised zymosan was used as the stimulus the drug was reported to enhance the chemiluminescence response.14 These observations thus seem to contradict the view that D-penicillamine is an effective oxidant scavenger.

We have previously shown that activated neutrophils generate reactive oxidants both intra- and extracellularly,15 and that these two activities are dependent upon the nature of the stimulus used. For example, the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) stimulates a rapid burst of oxidant secretion which is followed by a second phase of internally generated oxidants, whereas phagocytic stimuli, such as immune complexes or opsonised zymosan, activate oxidant production which is largely intracellular. Furthermore, the extent of myeloperoxidase secretion (and hence ability to constitute an extracellular myeloperoxidase-H₂O₂ system) is also dependent upon the nature of the neutrophil activating factor. Thus one explanation for the reports of an apparently low ability of D-penicillamine to scavenge neutrophil derived oxidants is that the experimental conditions used largely activated intracellular oxidant production, which may be inaccessible to the drug. This work aimed at establishing if D-penicillamine scavenged extracellularly released neutrophil oxidants (as these are likely to be of importance in inflammatory joint disease) and measuring the relative affinities of the drug for H₂O₂ and HOCl to determine its effects on oxidant production, dependent and independent of myeloperoxidase.

Materials and methods
ISOLATION AND PREPARATION OF NEUTROPHILS
Neutrophils were prepared from 20 ml heparinised venous blood from healthy volunteers using M-PRM (Flow Laboratories).16 After purification they were suspended in a Krebs/HEPES buffer containing (mmol/l): NaCl 120; KCl 4·8; KH₂PO₄ 1·2; CaCl₂ 1·3; MgSO₄, 1·2; HEPES (N-2-hydroxyethylpiperazine-N'2-ethanesulphonic acid) 25 (pH 7·4); 0·1% bovine serum albumin. Cells were counted after a suitable dilution in the above buffer with a Fuchs–Rosenthal haemocytometer slide and used with four hours of preparation.

ANALYTICAL METHODS
Chemiluminescence
Neutrophils were suspended in buffer containing either 10 μmol/l luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) or 25 μmol/l lucigenin (bis-N-methylacridinium nitrate) at 10⁶ cells/ml, in a total volume of 1 ml. After the addition of 1 μmol/l fMet-Leu-Phe (final concentration) chemiluminescence was measured with an LKB Wallac 1250 luminometer.17 A cell
free H$_2$O$_2$/HOCl/luminol chemiluminescence system was also used with concentrations of reagents as indicated in the text.

O$_2$ generation
Superoxide generation was measured in a continuous assay by monitoring the rate of reduction of ferricytochrome c inhibitable by superoxide dismutase. The assay mixture (total volume 1 ml) contained 75 μmol/l cytochrome c plus 5 × 107 cells and measurement was made with a Perkin-Elmer lambda 5 spectrophotometer.

H$_2$O$_2$ and HOCl scavenging by d-penicillamine
Absorption spectra of d-penicillamine in the presence and absence of oxidising/reducing agents were recorded with a Perkin-Elmer lambda 5 spectrophotometer. The temperature of operation was 20°C, scanning speed 1 nm/s, and slit width 2 nm.

CHEMICALS
D-Penicillamine, luminol, lucigenin, fMet-Leu-Phe, and H$_2$O$_2$ were from Sigma, and HOCl was from BDH. Before analyses freshly prepared solutions of H$_2$O$_2$ and HOCl were quantified by measurement of their absorption at 240 and 290 nm, respectively, using molar absorption coefficients of 43.4 and 390, respectively.

Results
EFFECT OF D-PENICILLAMINE ON fMET-LEU-PHE STIMULATED NEUTROPHIL CHEMILUMINESCENCE
When neutrophil suspensions are stimulated by the chemotactic peptide fMet-Leu-Phe the luminol dependent chemiluminescence response, which requires the activities of both the O$_2$/H$_2$O$_2$ generating oxidase and myeloperoxidase, is biphasic. We have shown that the initial, rapid (within one minute) peak is largely due to oxidant secretion, whereas the second, more sustained phase of oxidant production is largely intracellular. When neutrophil suspensions were preincubated with d-penicillamine for two min before addition of fMet-Leu-Phe the chemiluminescence responses generated were reduced in the presence of the drug (figs 1A and 2). The effects of the drug on intra- and extracellular luminol chemiluminescence were not identical, however: for example, at a drug concentration of 10$^{-4}$ mol/l the extracellular (initial) oxidant production was inhibited by 72%, whereas the intracellular production (that detected between three and five minutes) was only inhibited by 31% (Fig 1A). There was little difference in the inhibitory effects of different concentrations of d-penicillamine on intracellular oxidant production, whereas a clear inhibition of extracellular secretion dependent on dose was seen (fig 2).

In contrast with its effects on luminol chemiluminescence, d-penicillamine had little effect on fMet-Leu-Phe stimulated lucigenin chemiluminescence (fig 1B). Whereas luminol measures intra- and extracellular, myeloperoxidase-dependent oxidant production, lucigenin only measures myeloperoxidase independent oxidant secretion; it is believed that lucigenin detects O$_2$ or H$_2$O$_2$ or both, though the precise oxidant species detected is uncertain. These observations lead to three conclusions: firstly, d-penicillamine has only a slight effect on intracellularly generated oxidants; secondly, the drug effectively scavenges one or more components of the myeloperoxidase-H$_2$O$_2$ system; and thirdly, the drug does not efficiently scavenge O$_2$ or H$_2$O$_2$, if these are the oxidant species detected by lucigenin.

OXIDANT SCAVENGING BY D-PENICILLAMINE
Attempts to determine whether d-penicillamine

![Figure 1](http://ard.bmj.com/)

Figure 1 Effect of d-penicillamine on neutrophil chemiluminescence. Neutrophils (106/ml) were suspended in buffer containing either (A) 10 μmol/l luminol or (B) 25 μmol/l lucigenin at 37°C in (b) the presence and (a) the absence of 10$^{-4}$ mol/l d-penicillamine. After a two minute preincubation period fMet-Leu-Phe was added (final concentration 1 μmol/l) and the chemiluminescence responses measured.

![Figure 2](http://ard.bmj.com/)

Figure 2 Effect of d-penicillamine on intra- and extracellular oxidant production. Neutrophils (106/ml) were suspended in buffer containing 10 μmol/l luminol at 37°C in the presence and absence of d-penicillamine at the concentrations indicated. After a two minute preincubation period fMet-Leu-Phe (final concentration 1 μmol/l) was added and the chemiluminescence responses measured. Extracellular oxidant secretion was measured as the peak response seen at one minute after stimulation, whereas intracellular production was measured as the peak response at three to five minutes. Values presented are the mean response (with standard deviations) of five determinations on different preparations of neutrophils and shown as percentage inhibition of the responses noted in the absence of drug.
scavenged O₂ either generated in a cell free xanthine/xanthine oxidase system or else secreted from activated neutrophils, by determining its effects on cytochrome c reduction were frustrated by the fact that the drug itself rapidly reduced the cytochrome c. The ability of the drug to scavenge H₂O₂ and HOCI was determined using a cell free chemiluminescence system. The system is based on the fact that when HOCI is added to mixtures of H₂O₂ and luminol a rapid chemiluminescence burst is initiated. Preincubation of the H₂O₂/luminol mixture with D-penicillamine reduced chemiluminescence response initiated by HOCI by about 50% (table): doubling the H₂O₂ concentration restored activity, indicating that (a) the drug itself had no effect on the assay and (b) that it could reduce the chemiluminescence response by scavenging the H₂O₂. When the drug was added to the HOCI solution before its addition to the H₂O₂/luminol mixture, however, the inhibitory effect was much greater. Again, doubling the HOCI concentration restored activity, but merely doubling the H₂O₂ concentration did not restore activity to the HOCI/D-penicillamine mixture. These results indicate that D-penicillamine can scavenge both oxidants, but that its ability to scavenge HOCI is much greater than its ability to scavenge H₂O₂.

It seemed likely that when D-penicillamine scavenged these oxidants it might itself have become oxidised during the reaction. Absorption spectra of the native drug were recorded between 190 and 250 nm in the presence and absence of a chemical reductant (sodium dithionite) and oxidant (ammonium persulphate). These spectra indicated that the native drug was in a fully reduced state and that when oxidised its absorption maximum at 200 nm was lost (figs 3 (a) and (b)). Sequential additions of known concentrations of either H₂O₂ or HOCI were then added to samples of the native (reduced) drug and absorption spectra recorded. Both oxidants oxidised the drug as indicated by the decrease in absorbance at 200 nm (figs 3 (c) and (d)). On a molar basis, however, HOCI oxidised the drug more potently than did H₂O₂ (fig 4), being about twice as effective. This indicates that D-penicillamine is a more potent scavenger of HOCI than of H₂O₂, confirming the data shown in the table.

EFFECT OF OXIDISED D-PENICILLAMINE ON NEUTROPHIL OXIDANT PRODUCTION

If the proposed effect of D-penicillamine on oxidant scavenging is correct, the native D-penicillamine might be oxidised to give a potent scavenger of HOCI but not H₂O₂. This was tested using the reaction rate of luminol chemiluminescence initiated by HOCI in the presence of dithionite as a reductant and D-penicillamine (10⁻²) as a putative reductant. The reaction rate in the absence of D-penicillamine was 100% (table). D-penicillamine at 10⁻² produced a concentration-dependent acceleration of the reaction rate, and this was better than twice the rate in the absence of D-penicillamine (table). These results indicate that D-penicillamine oxidised to D-penicillamine dithionite. This reductant should be able to quench HOCI to give the native oxidant.

Table

<table>
<thead>
<tr>
<th>Luminal mixed with:</th>
<th>Reaction initiated by:</th>
<th>Chemiluminescence (% of control)†‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O₂</td>
<td>HOCI</td>
<td>100 (9) (n=23)</td>
</tr>
<tr>
<td>H₂O₂+D-penicillamine</td>
<td>HOCI</td>
<td>47 (11) (n=9)*</td>
</tr>
<tr>
<td>2xH₂O₂+D-penicillamine</td>
<td>HOCI</td>
<td>100 (8) (n=6)*</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>HOCI+D-penicillamine</td>
<td>88 (6) (n=12)**</td>
</tr>
<tr>
<td>2xH₂O₂</td>
<td>2xHOCI+D-penicillamine</td>
<td>105 (10) (n=5)</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>HOCI+D-penicillamine</td>
<td>85 (3) (n=8)**</td>
</tr>
</tbody>
</table>

H₂O₂ (8 µmol/l) was mixed with luminal (10 µmol/l) and the chemiluminescence generated upon injection of HOCI (8 µmol/l) was measured and taken as 100%. Where indicated, D-penicillamine (10⁻² mol/l) was added either to the luminol/H₂O₂ mixture or else to the HOCI solution and its effect on the chemiluminescence response measured.

†p<0.05, ‡p<0.001, using Student's t-test.

†‡x represents experiments in which the concentration of the indicated oxidant was doubled.

††Number of determinations is given (n) together with the standard deviation.

Figure 3 Effect of oxidants on D-penicillamine absorption spectra. The absorption spectrum of D-penicillamine (2x10⁻³ mol/l) was recorded between 190 and 250 nm with a Perkin-Elmer lambda 5 spectrophotometer. The absorption spectrum of the native drug (scan a) was unchanged after addition of the reductant, sodium dithionite (data not shown). Spectra were then recorded after the addition of a few crystals of ammonium persulphate (scan b), 9 mmol/l H₂O₂ (scan c), and 9 mmol/l HOCI (scan d).

Figure 4 Oxidation of D-penicillamine by H₂O₂ and HOCI. D-penicillamine was incubated in the absence and presence of varying concentrations of either H₂O₂ (○) or HOCI (●), as described in the legend to fig 3. The oxidation of the drug was then assessed as the decrease in absorption at 200 nm at a particular oxidant concentration and is expressed as a percentage of the untreated (native) drug absorbance.
neutrophil oxidant secretion was to scavenge extracellular oxidants (figs 1 and 2) and the drug itself became oxidised during this process (fig 4) then the oxidised drug should have little or no effect on neutrophil function. Thus a solution of D-penicillamine was mixed with just sufficient H$_2$O$_2$ for its complete oxidation, and its ability to scavenge neutrophil derived oxidants generated in response to fMet-Leu-Phe was determined. Whereas the native (reduced) drug inhibited oxidant secretion by over 60%, the oxidised form of the drug had no effect on oxidant secretion (fig 5). These data confirm that D-penicillamine scavenges secreted oxidants, thus reducing oxidant production by neutrophils, itself becoming oxidised (and non-functional) in the process.

Discussion

The data presented in this paper confirm that D-penicillamine is a potent scavenger of both H$_2$O$_2$ and HOCl, two products of the respiratory burst of activated neutrophils. As the relative concentrations of these two oxidants at inflammatory sites will depend on the levels of extracellular activity of the O$_2$/H$_2$O$_2$ generating NADPH oxidase and the activity of secreted myeloperoxidase, it is important to identify the potency of D-penicillamine in scavenging both H$_2$O$_2$ and HOCl. We have shown here that on a molar basis D-penicillamine is at least twice as efficient at scavenging HOCl than at scavenging H$_2$O$_2$. This may be of pathological importance as we have previously shown that although neutrophils isolated from the synovial fluid of patients with rheumatoid arthritis have been activated in vivo to secrete reactive oxidants, they have also been activated to secrete myeloperoxidase in these joints, and the myeloperoxidase is in a molecular form which indicates that it has reacted with H$_2$O$_2$. Furthermore, factors present within synovial fluid can activate the myeloperoxidase–H$_2$O$_2$ system, and hence the ability of D-penicillamine to scavenge HOCl within the inflamed joint may be of more importance than its ability to detoxify H$_2$O$_2$.

Previous work has shown only a modest inhibitory effect of D-penicillamine on phorbol myristate acetate stimulated luminol chemiluminescence of neutrophils, and even a stimulatory effect on opsonised zymosan activated chemiluminescence, despite the fact that the drug efficiently scavenges oxidants in cell free systems. Neither of these experimental conditions, however, results in optimal secretion of reactive oxidants from neutrophils. In our study we used the chemotactic peptide fMet-Leu-Phe to stimulate neutrophils because this agonist activates clearly defined phases of oxidant secretion (detected within one minute of addition) followed by intracellular oxidant production. Under these conditions 10$^{-4}$ mol/l D-penicillamine inhibited oxidant secretion by over 70% (fig 1), compared with only 20% inhibition of phorbol myristate acetate stimulated luminol chemiluminescence. The drug had little effect on intracellular oxidant production and this phenomenon was not dependent on concentration. The biological function of such intracellular oxidant generation and the significance of the effects of D-penicillamine on this phenomenon are unknown.

Luminol chemiluminescence requires the activity of the myeloperoxidase–H$_2$O$_2$ system, whereas lucigenin is thought to measure only O$_2$ or H$_2$O$_2$ secretion, or both, though the precise molecular species reacting with the latter lumigenic probe has not been unambiguously defined. Therefore, it is of considerable interest to note that although D-penicillamine scavenged extracellular luminol chemiluminescence, it had little effect on lucigenin chemiluminescence (fig 1). This implies that either lucigenin does not in fact measure O$_2$ or H$_2$O$_2$, or else that the predominant effect of D-penicillamine in neutrophils is to scavenge a myeloperoxidase dependent product (that is, HOCl) rather than...
H$_2$O$_2$. Therefore, we tested for the ability of D-penicillamine to scavenge both H$_2$O$_2$ and HOCl and found that it is a more potent scavenger of the latter oxidant.

The ability of D-penicillamine to scavenge H$_2$O$_2$ and HOCl resides in its thiol group. The drug becomes oxidised during its interaction with oxidants, and the oxidised form of the drug is incapable of interfering with the processes of neutrophil oxidant production. Although the serum concentration of this drug may be as high as 20 μmol/l, its effective concentration within joints, which may be exposed to high levels of neutrophil derived oxidants, will be reduced owing to its oxidation, and this may be of pathological importance. In view of the emerging evidence indicating that an extracellular myeloperoxidase-H$_2$O$_2$ system is operational in the rheumatoid joint, scavenging of HOCl (and to a lesser extent H$_2$O$_2$) may be one means by which the efficacy of this drug is explained.

We thank the Arthritis and Rheumatism Council and Mersey Regional Health Authority for generous financial support.

Inhibition of neutrophil oxidant secretion by D-penicillamine: scavenging of H2O2 and HOCl.

M J Ledson, R C Bucknall and S W Edwards

doi: 10.1136/ard.51.3.321

Updated information and services can be found at: http://ard.bmj.com/content/51/3/321

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/