Does the locus on chromosome 11 implicated in susceptibility to HLA–DR4 dependent type I diabetes mellitus also affect susceptibility to rheumatoid arthritis?

K D Pile, B P Wordsworth, J T Bell

Abstract

There is a polygenic component to rheumatoid arthritis (RA) in addition to the known association with HLA–DR4. It has previously been shown in another autoimmune disease (type I diabetes mellitus) that a gene on chromosome 11p can act with HLA–DR4 to enhance susceptibility (relative risk 5-6). It is therefore possible that this locus may also affect the development of RA. Genotype frequencies at this locus, defined by a dimorphic Fok I restriction site, were compared in 139 healthy controls and 213 patients with classical/definite RA. In contrast with diabetes there was no increase in genotypes lacking the Fok I site, either in the rheumatoid group overall (125/140 compared with 86/139 controls) or in the DR4 positive rheumatoid group (76/140 compared with controls). These results indicate that the interaction between DR4 and a locus on chromosome 11p is not common to all DR4 associated autoimmune diseases.

Subjects, methods, and results

We studied 139 healthy controls and 211 patients with classical/definite rheumatoid factor positive RA, all of whom had progressive erosive arthritis requiring treatment with second line drugs, and 140 of whom were DR4 positive. HLA–DR genotypes were determined for all the subjects with RA by the amplification of DRB1 alleles from genomic DNA by the polymerase chain reaction and serial hybridisation to radiolabelled oligonucleotides as described previously.

Genotypes for the insulin/insulin-like growth factor 2 region were defined using a dimorphic Fok I restriction enzyme. A 568 base pair fragment of DNA flanking the 3' end of the insulin gene was amplified by the polymerase chain reaction using two oligonucleotide primers (a) 5'-CAGCCCCGCTCTCCTCCACA-3' and (b) 5'-TCAGAAGGCATTCGTTGTGAAC-3'. Ten microlitres of the final reaction mix was digested with Fok I in a total reaction volume of 30 µl according to the manufacturer's instructions (New England Biolabs, Beverly, MA, USA). The products were separated by agarose gel electrophoresis and visualised after staining with ethidium bromide under ultraviolet light. Absence of the Fok I restriction site yielded a band of 568 base pairs that was cleaved to bands at 386 and 182 base pairs when the site was present.

The distribution of individual genotypes in

<table>
<thead>
<tr>
<th>Subject group</th>
<th>Genotypes</th>
<th>Relative risk</th>
<th>χ²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (n = 139)</td>
<td>86</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>All patients with RA (n = 211)</td>
<td>125</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Patients with RA positive for DR4 (n = 140)</td>
<td>76</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

*NS = not significant.
Possible effect of chromosome 11 locus on susceptibility to RA

the control group agreed with those predicted by Hardy-Weinberg equilibrium. The table gives the relative risks with 95% confidence intervals associated with the Fok I genotypes. We have illustrated the effect of the 2,2 genotype (homozygous absence of the Fok I restriction site), contrasted with other genotypes, as this was the genotype that was associated with an increased risk of type I diabetes. There was no increased risk associated with the 2,2 genotype either in the RA group overall or in the 140 DR4 positive patients with RA.

Discussion

Although it is generally believed that the HLA linked component of susceptibility to RA constitutes a minority of the whole genetic contribution to this disease, it is not clear how many other genes might also be involved. Indeed, no other susceptibility loci have been identified with certainty in patients with RA. In the non-obese mouse model of autoimmune diabetes there are at least four genetic loci that have been incriminated in susceptibility and in the human disease there is evidence for at least one non-HLA locus. Our results indicate, however, that this locus in the insulin/insulin-like group factor 2 region on chromosome 11p, though relevant to HLA–DR4 dependent diabetes, is not common to all DR4 related autoimmune diseases, including RA.

K D Pile is in receipt of the Dorothy Eden Fellowship of the Arthritis Foundation of New Zealand. This work was financially supported by a grant from the Arthritis and Rheumatism Council.

Does the locus on chromosome 11 implicated in susceptibility to HLA-DR4 dependent type I diabetes mellitus also affect susceptibility to rheumatoid arthritis?

K D Pile, B P Wordsworth and J I Bell

doi: 10.1136/ard.51.11.1250

Updated information and services can be found at:
http://ard.bmj.com/content/51/11/1250

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/