Antibody response against 26 and 46 kilodalton released proteins of yersinia in yersinia triggered reactive arthritis

Outi Mäki-Ikola, Matthias Pulz, Jürgen Heesemann, Riitta Lahesmaa, Riitta Saario, Auli Toivanen, Kaisa Granfors

Abstract
Using an inhibition enzyme linked immunosorbent assay (ELISA) the serum antibody responses against released proteins of yersinia of molecular weights 26 and 46 kilodaltons were studied in 37 patients with and in 21 patients without reactive arthritis following yersinia infection. Although no difference was seen for the 46 kilodalton released protein, patients with yersinia triggered reactive arthritis had higher levels of antibodies against the 26 kilodalton released protein at the beginning of the disease than patients with uncomplicated yersiniosis. This may indicate an increased production of this protein in the early infection leading to poorer phagocytosis of the bacteria and thereby to the persistence of yersinia organisms within the arthritic host.

In this study we have further investigated the role of released proteins in the pathogenesis of reactive arthritis. We evaluated the antibody levels against two single released proteins—that is, those of 26 and 46 kilodaltons, in serum samples from patients with and without reactive arthritis following yersinia infection with an inhibition ELISA using monoclonal antibodies directed against the two proteins.

Patients and methods
PATIENTS AND SERUM SAMPLES
The levels of antibodies to released protein were measured in a total of 127 serum samples from 58 patients with a sporadic Yersinia enterocolitica O:3 infection from our collection of patients with yersiniosis. Diagnosis of the patients was based on the typical clinical picture (diarrhoea, abdominal pain, vomiting, and/or arthritis) and clearly increased levels of antibodies to yersinia detected by ELISA; in 22 patients the pathogen was also isolated from the stools. The age of the patients ranged from 16 to 62 years (mean 35), and the female to male ratio was 25:33. Of the patients 21 had recovered uneventfully from the infection, and 37 had developed typical reactive arthritis (verified by a rheumatologist) as a complication within three weeks of the onset of infection. Of the 34 patients with arthritis tested, 29 were positive for the HLA-B27 antigen; the corresponding figure for 20 patients without arthritis was three. Serum samples obtained at different follow up times were stored at −20°C and studied simultaneously.

PREPARATION OF RELEASED PROTEINS
The plasmid positive strain of Y enterocolitica O:3 (strain Y-108) was grown as the source of released proteins, and released proteins were prepared as described previously.

MONOClonAL Antibodies
The monoclonal antibody 9–200 recognising the 46 kilodalton released protein of Y enterocolitica O:3 has been described previously. The monoclonal antibody PU-174 was produced equally and recognises the 26 kilodalton released protein of Y enterocolitica O:3. The analysis of the monoclonal antibodies by sodium dodecyl-sulphate polyacrylamide gel electrophoresis and immunoblotting was performed as described previously (figure). Hybridoma culture supernatants were used. The isotype of 9–200 was IgGl and that of PU-174 was IgG2b.
INHIBITION ELISA WITH MONOCLONAL ANTIBODIES

The procedure was similar to that described previously. Polyacrylamide microtitre plates (Costar, Cambridge, MA, USA) were coated with the optimum concentration of released proteins (6 μg/ml) in phosphate buffered saline (PBS), and saturated with 1% bovine serum albumin in PBS (1% BSA-PBS). Serum samples were diluted 1:10 in 1% BSA-PBS and incubated on the plates (75 μl/well) for two hours at 37°C. After washing 60 μl of the monoclonal antibody (9–200 at 1:50 and PU-174 at 1:2000 dilution) was added to incubate overnight at room temperature. After washing 60 μl of goat alkaline phosphatase conjugated antiserum (absorbed with human serum) specific for mouse IgG and IgM (TAGO, Burlingame, CA, USA) was added at a dilution of 1:4000 and incubated for three hours at 37°C. Quantitation by enzyme substrate was performed as described previously. Results were compared with values obtained by the monoclonal antibody alone (without serum sample) to calculate the inhibition percentage according to the following formula (ODc = optical density):

\[
\text{Inhibition} = \frac{(\text{OD}_{UV} - \text{OD}_{V})/\text{OD}_{UV} \times 100}{(\text{OD}_{UV} - \text{OD}_{V})/\text{OD}_{UV} \times 100}
\]

where ODc is the value of the uninhibited control obtained with the monoclonal antibody alone, ODa is the background of the test obtained with the buffer, and ODs is absorbance obtained by the patient’s serum sample.

Results

Consecutive samples from 58 patients with *Y enterocolitica* O:3 infection were studied in the inhibition ELISA. Serum samples from patients who were used to inhibit the binding of monoclonal antibodies to 46 and 26 kilodalton released proteins. The table shows the inhibition percentages obtained with samples collected on three occasions during follow up. The 1:10 dilutions of serum samples from patients with arthritis were able to inhibit the binding of 26 kilodalton released protein specific monoclonal antibody by 40% in the beginning of the disease, compared with 20% for serum samples from patients without arthritis (p<0.05); this means that there were more antibodies to the monoclonal antibody PU–174 defined epitope of the 26 kilodalton released protein in the serum samples of patients with arthritis. The tendency of the serum samples from patients with arthritis to inhibit the binding of the 26 kilodalton released protein specific monoclonal antibody more than serum samples from patients without arthritis was also seen at follow up, but the difference was not statistically significant.

There were no differences in the ability to inhibit the binding of the 46 kilodalton released protein specific monoclonal antibody between the two patient groups at any follow up time.

Discussion

In this study we used an inhibition ELISA to measure quantitatively the antibody responses against monoclonal antibody defined epitopes of two released proteins of plasmid bearing *Y enterocolitica* in patients with a recent yersinia infection. It has been shown that at the beginning of the disease the antibody response against all released proteins together is higher in patients who developed reactive arthritis as a complication after infection compared with those with uncomplicated yersinia infection. Using the qualitative immunoblotting method it was shown previously that patients with arthritis develop antibodies against the 26 kilodalton released protein more often. The 26 and 26 kilodalton released proteins have been shown to be the most immunogenic released proteins.

The plasmid encoded released proteins, especially Yop5, are known to increase the ability of yersinia to resist opsonisation and phagocytosis by granulocytes. Thus the stronger antibody response to the 26 kilodalton released protein in patients with arthritis may indicate increased production of this protein, which in turn may lead to inhibition of phagocytosis of the bacteria. This phenomenon, together with the initially weak IgM class antibody and cell mediated immune responses to yersinia in patients with arthritis, may lead to failure in the first line of defence against the microbe, and thereby to long term persistence of the pathogen within the host. This agrees with our observations of the persistence of microbe specific antibodies in patients with arthritis for long periods after the initial infection. The antibody response against the 26 kilodalton released protein specific monoclonal antibody more than serum samples from patients without arthritis was also seen at follow up, but the difference was not statistically significant.
kilodalton released protein in patients with and without arthritis differed only at the beginning of the disease. It seems that the released proteins are functionally important only for the bacteria invading tissues and trying to escape the host’s defence mechanisms—that is, at the early stage of the infection, as suggested previously.10 Thus, the stronger antibody response against the 26 kilodalton released protein may simply indicate a greater challenge by bacterial antigens reflecting greater invasion in patients with arthritis.

Hoogkamp-Korstanje et al stressed the importance of the 46 kilodalton released protein in the pathogenesis of chronic yersinia infection, as they showed yersinia bacilli in intestinal biopsy specimens of patients with chronic yersinia triggered reactive arthritis by immunofluorescence using monospecific rabbit antiserum to this protein.15 In this study, however, no evidence for the involvement of the 46 kilodalton released protein in the pathogenesis of reactive arthritis was found. In conclusion, the 26 kilodalton released protein and the antibody response against it may contribute to the abnormal host-microbe interaction in patients developing yersinia triggered reactive arthritis. This may lead to ineffective elimination of the pathogen and thereby to the persistence of bacterial antigens in the joints.12

We thank Dr Rauli Leino and Dr Riitta Merilähti-Palo for some of the patient records and samples. Mrs Soile Niittoaho is acknowledged for her excellent technical assistance. This work was supported by the Finnish Cultural Foundation, the Rheumatism Research Foundation, the Alfred Kordelin Foundation, the Turku University Foundation, the Paulo Foundation, the Finnish Academy and the Sigrid Juselius Foundation.

Antibody response against 26 and 46 kilodalton released proteins of yersinia in yersinia triggered reactive arthritis.

O Mäki-Ikola, M Pulz, J Heesemann, R Lahesmaa, R Saario, A Toivanen and K Granfors

doi: 10.1136/ard.51.11.1247

Updated information and services can be found at:
http://ard.bmj.com/content/51/11/1247

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/