Effects of murine recombinant interleukin 1 on synovial joints in mice: measurement of patellar cartilage metabolism and joint inflammation

A A J van de Loo, W B van den Berg

Abstract
Murine recombinant interleukin 1 was injected intra-articularly into mice. It induced a clear effect on patellar cartilage within 24 hours. A low dose of interleukin 1 (1 ng) elicited a significant reduction in [35S]sulphate incorporation (50%) into proteoglycans and an accelerated breakdown (twofold) of 35S pre-labelled proteoglycan. Proteoglycan breakdown returned to normal rates (~10%/day) 48 hours after a single interleukin 1 injection. Recovery of proteoglycan synthesis was delayed by up to 72 hours, however, which implies that repair of the depleted cartilage matrix is retarded. Interleukin 1 induced only minor joint inflammation, too slight to be held responsible for the strong suppression of proteoglycan synthesis. Vehement joint inflammation was found after repeated interleukin 1 injections. The plasma extravasation and massive infiltration and exudation of leucocytes, predominantly polymorphonuclear leucocytes, were not a mere summation of single interleukin 1 effects, but point to interleukin 1 induced local hypersensitivity. The cartilage matrices of patella and femur were heavily depleted. Measurement of the extent of loss of 35S prelabelled proteoglycan and the prolonged inhibition of [35S]sulphate incorporation indicate that both inhibition of proteoglycan synthesis and enhanced loss of proteoglycan contributed substantially to this depletion.

Interleukin 1 is a 17 kilodalton soluble unglycosylated protein, secreted by activated cells of mononuclear origin. Two forms have been described, interleukin 1α and interleukin 1β, which are related proteins that bind to the same receptor and show roughly the same biological effects. This ubiquitous mediator displays many inflammatory and immunoregulatory activities. After systemic administration interleukin 1 gave rise, for example, to an acute phase response, enhanced immunoglobulin production, and protection against bacterial injury. Apart from systemic effects, related to high concentrations of circulating interleukin 1 during inflammatory processes, interleukin 1 may also play a more direct part in local inflammatory events. It has been shown that interleukin 1 injected into the skin attracted neutrophils, leading to microvascular injury. Moreover, interleukin 1 enhanced the binding of lymphocytes to endothelial cells and promoted chemotaxis of these cells. Recombinant interleukin 1 injected directly into rabbit knee joints induced only minor inflammation, but it was highly effective in causing an exacerbation of the arthritic process in a previously injured joint. The important role of interleukin 1 in arthritis is further substantiated by the observation that it is produced by the arthritic synovium and it can be detected in substantial amounts in synovial fluids. Whether interleukin 1 is the predominant pathological messenger or only one of many effectors in arthritis is still unknown.

In addition, interleukin 1 may contribute to the enhanced proteoglycan and cartilage destruction. In vitro studies have shown that interleukin 1 (catabolin) added to living explants of cartilage induces loss of matrix proteoglycans and inhibition of synthesis of proteoglycans. In vivo studies with purified interleukin 1 showed significant loss of proteoglycans and inhibition of proteoglycan synthesis after intra-articular injection, and the presence of clear joint inflammation. Recent studies with recombinant interleukin 1 disclosed only minor signs of inflammation. Nevertheless, proteoglycan loss was clearly shown and it was concluded that degradation of cartilage induced by interleukin 1 was unrelated to inflammation. Effects on proteoglycan synthesis were not determined. We studied the impact of recombinant murine interleukin 1 after single and repeated injections in the murine knee joint. Special attention was paid to measurement of both the inflammation and two indices of cartilage destruction—proteoglycan loss and inhibition of proteoglycan synthesis.

Materials and methods

ANIMALS
C57b1/10 mice aged 8–10 weeks at the start of the experiments were used. They were fed a standard diet and tap water freely.

CHEMICALS
Recombinant interleukin 1α and interleukin 1β were kindly supplied by Dr I G Otterness (Pfizer Central Research, Groton, CT). Biological activity was verified by a lymphocyte activating factor assay. The interleukin 1 gave 1 unit activity consistently in the 10–40 pg/ml range. Screening for endotoxin activity (Limulus assay) was negative up to a concentration of 100 µg/ml. The recombinant interleukin 1 preparation was stored at −20°C and showed consistent lymphocyte activating factor activity over the period studied.

Zymosan A was obtained from Sigma (Sac-
Effects of interleukin 1 on synovial joints

c. s. ceres
tiae, No Z-4250). Zymosan (30 mg) was dissolved in 1 ml saline by heating up to 100°C twice, then sonicated to obtain a homogeneous suspension. Batches were stored at −20°C.

LYMPHOCYTE ACTIVATING FACTOR ACTIVITY
Murine thymocytes from mice, aged 6–7 weeks, were cultured for four days in the presence of 1 μg/ml phytohaemagglutinin and various interleukin 1 concentrations. Thymocytes were cultured at a concentration of 10^5/ml in 200 μl wells, and [3H]thymidine was added (37 kBq/ well) during the last day. One unit of lymphocyte activating factor activity was defined as the interleukin 1 concentration giving half the plateau of comitogenic thymocyte proliferation induced by interleukin 1.

INTRA-ARTICULAR INJECTIONS
Recombinant interleukin 1 or zymosan was injected through the suprapatellar ligament into the left knee joint space. In experiments investigating the proteoglycan metabolism of the contralateral joint received an equal volume (6 μl) of saline. In the technique uptake experiments only an incision into the skin was made in the contralateral knee. In these experiments a control group was included, in which saline was injected into the left knee joint. From the latter experiments it became clear that saline neither induced measurable joint inflammation nor influenced proteoglycan metabolism.

99mTc UPTAKE MEASUREMENTS
Joint inflammation was determined by measurements of 99mTc pertechnetate uptake in the knee joints.42 Briefly, animals were sedated by intraperitoneal administration of 4.5% chloral hydrate, 0.1 ml/10 mg of body weight. Approximately 370 kBq 99mTc in 0.2 ml saline was injected subcutaneously in the neck region. After 15 minutes the accumulation of isotope in the knee, owing to increased blood flow and tissue swelling, was determined by external gamma counting. The severity of inflammation was expressed as the ratio of the 99mTc uptake in the left knee joint (zymosan or interleukin 1 injected) over that in the right knee joint.

BREAKDOWN OF [35S]PROTEOGLYCANS
To study in vivo degradation of patellar cartilage proteoglycans were prelabelled with Na[^35]SO_4. [35S]Sulphate (1.85–3.7 MBq) was injected intraperitoneally 24 hours before intra-articular injection of interleukin 1, and patellae were isolated at various times thereafter. Before intra-articular injection (t=0) one group of six mice was killed and the ^35S content was measured. Breakdown of proteoglycans was expressed as the loss of [35S]sulphate compared with the ^35S content of control patellae taken at t=0.

SYNTHESIS OF PATELLAR PROTEOGLYCANS
Proteoglycan synthesis was measured ex vivo. Patellae were dissected, leaving a minimal area of non-cartilaginous tissue surrounding the cartilage. The patellae (five to six specimens) were placed in 2 ml of incubation medium consisting of RPMI-HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid; Flow Laboratories, Irvine, Scotland) with added penicillin (100 units/ml), streptomycin (100 μg/ml), and 1-glutamine (2 mmol/l) and 74 kBq ^35SO_4. Labelling was continued for three hours. At the end of the incubation period the patellae were fixed overnight in 10% formalin and decalcified in formic acid (5%) for four hours. The patella could then easily be punched out of the adjacent tissue and was dissolved in 0.5 ml Luma solve (Hicola, Oud-Beijerland, The Netherlands) at 60°C for four hours. The ^35S content of each patella, which is a reliable measure of the [35S]glycosaminoglycan content, was measured by liquid scintillation counting.

IODINATION OF INTERLEUKIN 1
About 25 μg interleukin 1α was radioiodinated with 125I (Amersham International, Buckinghamshire, UK) by the Bolton and Hunter method. The iodinated protein was smaller than 17 kilodaltons as shown with sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and more than 90% of the radio labelled preparation could be precipitated with goat anti-mouse interleukin 1α antisera. The labelled preparation also retained full biological activity.

INTERLEUKIN 1 RETENTION MEASUREMENTS
125I labelled interleukin 1 (800 units) was injected into the right knee joint and saline into the left knee joint. At various hours thereafter the 125I radioactivity of both knees was measured by external gamma counting. Values for the right knee were corrected according to the value for the left knee, which represents background activity. Retention was expressed as a percentage of the initial count rate measured immediately after [125I]interleukin 1 injection. In addition, quantitative measurements were made on dissected patellae.

AUTORADIOGRAPHY
Dry deparaffinised tissue sections of whole patellae were covered by a photographic K5 emulsion (Ilford, Basildon, Essex, UK) and exposed for three to five weeks. After this period the slides were developed and stained with haematoxylin and eosin.

HISTOLOGY OF KNEE JOINTS
Histological scoring of the inflamed knees was carried out after dissection and processing.44 Standard frontal sections (6 μm) were prepared and stained with haematoxylin and eosin, Giemsa stain, or with safranin O, which enables identification of neutrophils and eosinophils. Eosinophils were not seen after interleukin 1 injection. The arthritic score was determined by grading the infiltrate and the exudate from 0
to +++, where 0 = no change, and +++ = large numbers of cells. The scoring of cartilage depletion was done on safranin O sections and depletion was graded from 0 to +++ in accordance with the degree of loss of staining in the superficial, metabolically active cartilage layer.

Results

Suppression of the Proteoglycan Synthesis

Interleukin 1 induced marked changes in the metabolism of cartilage in vivo. The suppression of proteoglycan synthesis in patellar cartilage 24 hours after intra-articular injection was dependent on dose (fig 1). There was considerable inhibition of proteoglycan synthesis at low doses (3 U) of interleukin 1, and 30 U interleukin 1 (about 1 ng) was sufficient to decrease the proteoglycan synthesis to 60% of normal. Recombinant murine interleukin 1β was as potent as interleukin 1α in the suppression of proteoglycan synthesis (table 1). The in vivo potency of interleukin 1 was further shown by the rapid appearance of the interleukin 1 effect. With 30 U of interleukin 1 the proteoglycan synthesis showed maximal suppression at 24 hours, which remained high for up to 48 hours and declined thereafter (fig 2). When a high dose of interleukin 1 (300 U) was used the suppression was

Table 1: Comparison of effects of interleukin 1α (IL1α) and interleukin 1β (IL1β) on patellar cartilage homeostasis

<table>
<thead>
<tr>
<th>Dose (U)</th>
<th>Synthesis at t=24 h</th>
<th>Breakdown and loss of [35S]sulphate†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cpm/patella</td>
<td>% Of saline</td>
</tr>
<tr>
<td>IL1α</td>
<td>IL1β</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>626 (41)</td>
<td>616 (76)</td>
</tr>
<tr>
<td>3</td>
<td>470 (95)*</td>
<td>555 (75)</td>
</tr>
<tr>
<td>30</td>
<td>290 (22)**</td>
<td>269 (18)**</td>
</tr>
<tr>
<td>300</td>
<td>242 (20)**</td>
<td>270 (25)**</td>
</tr>
</tbody>
</table>

The proteoglycan synthesis after interleukin 1 injection was significantly suppressed. *p<0.05; **p<0.001—as calculated with Student's t test. This representative experiment was carried out with groups of six mice each. Values are mean (SD).

†The 35S content was determined at 24 and 48 hours and the loss of label was expressed as a percentage of the 35S content at t=0 (151 (25 cpm/patella).
greater at 48 hours than with lower doses, though not reaching statistical significance compared with 24 hours; suppression was still observed at 72 hours. Restoration of proteoglycan synthesis was inconsistent. The mean value (75% of normal proteoglycan synthesis) was an average that included animals which showed full recovery and some animals still with full suppression. Although a lower dose of interleukin 1 (30 U) induced the same suppression at 24 and 48 hours as 300 U, there was complete recovery of proteoglycan synthesis at 72 hours and sometimes enhanced proteoglycan synthesis. An overshoot to enhanced synthesis was more marked at later times (data not shown), and this phenomenon contributes to accelerated recovery of the depleted matrix.

ACCELERATED BREAKDOWN OF PATELLAR CARTILAGE

Coincident with significant suppression of proteoglycan synthesis, interleukin 1 induced an accelerated breakdown of prelabelled proteoglycans (fig 3). A low dose of interleukin 1α (30 U) was almost as effective as the higher dose (300 U). This sensitivity of patellar cartilage to interleukin 1 had already been seen in the suppression of proteoglycan synthesis. The basal proteoglycan breakdown in control patellae was 10.7 (SD 6.0)% (n=9) as measured by loss of [35S]sulphate between 0 and 24 hours. In the presence of interleukin 1α (300 U) the breakdown was 23.0 (9.1)% (n=6) during the first 24 hours after injection. This means that interleukin 1 accelerated the proteoglycan breakdown rate.
SUPPRESSION OF PROTEOGLYCAN SYNTHESIS BY INTERLEUKIN 1 AND THE EFFECT OF INFLAMMATION

To investigate whether the effect of interleukin 1 on the articular cartilage was related to its potential to induce joint inflammation we compared the effect of various doses of the arthritogenic zymosan and recombinant interleukin 1. A high dose of zymosan (60 μg) caused marked suppression of proteoglycan synthesis (46%) 24 hours after intra-articular injection, and technetium uptake measurements, reflecting joint inflammation, were considerably raised. When the dose of zymosan was lowered, less severe inflammation and concomitantly less suppression of proteoglycan synthesis was found, indicating that in this dose range there was a correlation between inflammation and inhibition of proteoglycan synthesis. A dose of 1.8 μg zymosan still induced significant joint swelling (Tc uptake) but the effect on proteoglycan synthesis was no longer seen. In contrast, interleukin 1α in the dose range studied did not induce enhanced technetium uptake, but there was a marked inhibition of proteoglycan synthesis (table 2). Histology showed that after 24 hours there was only minor infiltration of polymorphonuclear leucocytes into the synovial membrane (fig 4).

In conclusion, the inhibition of proteoglycan synthesis by interleukin 1 must be due to a direct effect on cartilage and was not secondary to inflammation induced by interleukin 1.

INTERLEUKIN 1α RETENTION IN MURINE KNEE JOINT

The iodinated interleukin 1 (Bolton and Hunter) retained its full biological activity and molecular character. There was a poor retention of [125I] interleukin 1 in the naive knee joint (fig 5). One hour after [125I] interleukin 1 injection 30% of interleukin 1 was retained, and at six hours retention fell below 10%. The penetration of interleukin 1 into the patella was poor. Autoradiography carried out shortly after injection showed no distinct labelling of the cartilage compared with the joint cavity. At six hours after [125I] interleukin 1 injection only 0.02 U [125I] interleukin 1 was retrieved in the isolated patella and autoradiography showed that interleukin 1 was faintly dispersed in the patellar cartilage matrix. Distinct association with chondrocytes was never found.

Table 2: Comparison of the effect of zymosan and interleukin 1α on joint inflammation and proteoglycan synthesis. Values are given as means (SD)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Dose (μg/knee)</th>
<th>Inflammation % Tc ratio</th>
<th>Proteoglycan synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>—</td>
<td>1.09 (0.08)</td>
<td>1303 (245)</td>
</tr>
<tr>
<td>Zymosan</td>
<td>1.8</td>
<td>1.23 (0.08)</td>
<td>1087 (106)</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>1.32 (0.09)*</td>
<td>940 (109)</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>1.41 (0.10)*</td>
<td>845 (99)*</td>
</tr>
<tr>
<td></td>
<td>60.0</td>
<td>1.80 (0.07)*</td>
<td>675 (135)*</td>
</tr>
<tr>
<td>Interleukin 1α</td>
<td>3</td>
<td>1.94 (0.05)</td>
<td>732 (31)*</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.02 (0.05)</td>
<td>401 (31)*</td>
</tr>
</tbody>
</table>

*Joint swelling was detected by enhanced 99mTc pertechnetate uptake as measured by external gamma counting. This was expressed as a ratio of the technetium uptake in the inflamed knee over that in the contralateral knee of the same animal.

1Patellae were dissected and the proteoglycan synthesis was determined by [35S] sulfate incorporation. In the untreated contralateral patellae the %S incorporation was stated as 100%.

* p<0.001—* with respect to the contralateral knee were calculated with Student’s t test.
Effects of interleukin 1 on synovial joints

Our observations on the effects of recombinant interleukin 1 show two distinct alterations in synovial joints: (a) induction of granulocyte accumulation in the joint and (b) disturbance of the cartilage metabolism.

Discussion

Our observations on the effects of recombinant interleukin 1 show two distinct alterations in synovial joints: (a) induction of granulocyte accumulation in the joint and (b) disturbance of the cartilage metabolism.

Table 3: The inflammatory response of single and repeated interleukin 1α injections and the effects on cartilage metabolism

<table>
<thead>
<tr>
<th>Variable</th>
<th>Single IL1α injection</th>
<th>Triple IL1α injections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Infiltration</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Exudation</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>Proteoglycan depletion</td>
<td>ND</td>
<td>0</td>
</tr>
</tbody>
</table>

*103Tc ratio (mean (SD))

1-03 (0-09) 1-02 (0-05) ND 1-22 (0-06) 1-03 (0-06) ND

Representative experiment in which single and triple (three times on alternate days) interleukin 1 injections were compared for their inflammatory effect, six to 48 hours after the last injection. The joint sections were scored on: infiltration of leucocytes into the synovial membrane, exudation of polymorphonuclear cells into the joint cavity, and the proteoglycan depletion of cartilage matrix. Histological changes were arbitrarily represented as 0 = no changes, + = slight, ++ = moderate, +++ = marked. Joint swelling was expressed by an enhanced ratio of 103Tc pertechnetate uptake, and significant differences—**p<0.001—were calculated by Student’s t test. Repeated saline injections did not cause an enhanced 103Tc ratio.

†IL1=interleukin 1.

Table 4: Effects of single and repeated interleukin 1α injections on patellar proteoglycan metabolism

<table>
<thead>
<tr>
<th>Variable</th>
<th>Substance</th>
<th>cpm/patella</th>
<th>% Of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown</td>
<td></td>
<td></td>
<td>0 h 24 h 120 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 h 24h 120h</td>
</tr>
<tr>
<td>Saline</td>
<td>380 (156)</td>
<td>100</td>
<td>89 63</td>
</tr>
<tr>
<td>Interleukin</td>
<td>339 (82)</td>
<td>240 (44)</td>
<td>170 (45)</td>
</tr>
<tr>
<td>Synthesis</td>
<td></td>
<td></td>
<td>100 100 53</td>
</tr>
<tr>
<td>Saline</td>
<td>1195 (101)</td>
<td>1062 (145)</td>
<td>563 (78)*</td>
</tr>
<tr>
<td>Interleukin</td>
<td>421 (35)*</td>
<td>36</td>
<td>53</td>
</tr>
</tbody>
</table>

Representative experiment in which the effect on proteoglycan metabolism was compared at 24 hours after a single injection or triple injections (10 h) of saline or interleukin 1 (300 U). Breakdown of patellar cartilage was measured as the amount of 35S sulphate and expressed relative to the 35S content at t=0. Proteoglycan synthesis of patellar was measured as the amount of 35S sulphate incorporated. Significant differences—**p<0.001—with respect to saline were calculated by Student’s t test.

†Values are means (SD).

A single injection of interleukin 1 was only slightly inflammatory: it induced no enhanced plasma extravasation (tables 2 and 3) at 24 hours and only minor infiltration in the synovial membrane and exudation into the joint cavity, predominantly polymorphonuclear leucocytes (table 3, fig 4). It is known that interleukin 1 stimulates vascular endothelial cells to express a neutrophil CD18 antigen. This antigen facilitated the adhesiveness of neutrophils.13 45 Although new protein synthesis was required for this, the accumulation of neutrophils peaked at four hours but had subsided by 24 hours.13 17 Even when we injected high doses of interleukin 1 (up to 800 U) still only minor inflammation could be observed at four to six hours (data not shown). Signs resembling experimental arthritis, like synovitis and severe cartilage matrix depletion, were only seen after repeated interleukin 1 injections; these signs were probably related to rapid interleukin 1 clearance from the joint (fig 5). The massive infiltration and major exudation of leucocytes after triple interleukin 1 injections were not a mere summation of the effects of each interleukin 1 injection. A local hypersensitivity for interleukin 1 as seen in the interleukin 1 induced local Schwartzman reaction in rabbit skin might be postulated.46 47 Similar interleukin 1 hyperreactivity was also shown in arthritic flares of joints previously injured with bacterial cell wall preparations,42 and we have recently shown that interleukin 1 causes flares of smouldering zymosan or antigen induced arthritis in mice.48 In addition, the onset of type II collagen induced arthritis in mice was enhanced by continuous administration of interleukin 1.49

The question arises whether inflammation was at least partially responsible for interleukin 1 induced cartilage depletion. We have shown
that suppression of the proteoglycan synthesis induced by one single interleukin 1 injection was not caused by continuing inflammation. Compared with zymosan, interleukin 1 induced slight inflammation, too little to promote strong inhibition of proteoglycan synthesis (table 2). The suppression of proteoglycan synthesis after repeated interleukin 1 injections did not significantly differ from that after a single injection. Although significant inflammation was found after repeated interleukin 1 injections, it seems unlikely that the cumulative loss of $[^{35}S]$proteoglycan was related to this. The overall loss was 18% (table 4) and might well be explained by triple interleukin 1 insults, each resulting in 7–8% $[^{35}S]$proteoglycan degradation. Recent studies from Pettipher et al also provided evidence indicating a minor role for the inflammatory exudate in proteoglycan degradation.41 Proteoglycan loss from cartilage induced by interleukin 1 was unimpaired in neutropenic animals,41 and pronounced proteoglycan degradation was still found during antigen induced arthritis in neutropenic rabbits.41 Earlier studies in inflamed air pouches have pointed to the incompetence of an acute inflammatory exudate in cartilage breakdown.50 It may even be postulated that neutrophils prevent interleukin 1 effects as they contain a specific interleukin 1 inhibitor.41 52

The marked depletion of cartilage matrix after repeated interleukin 1 injections as shown by histology (fig 4) is probably the final result of both cumulative breakdown of proteoglycan (18%, table 4) and prolonged suppression of proteoglycan synthesis (50%, table 4). At day 1 after a single interleukin 1 injection about 10% proteoglycan depletion was found, and the lack of clear-cut proteoglycan loss on histological sections taken at that time (fig 4) indicates that this degree of depletion is beyond the detection limit. The marked depletion after repeated interleukin 1 injections must therefore reflect a much higher degree of proteoglycan depletion and this may only be explained by a considerable lack of sufficient resynthesis of new proteoglycan. Kinetic studies on this subject are in progress. Earlier studies with purified interleukin 1 preparations given once a day yielded high degrees of proteoglycan depletion,39 40 but the possibility that this was caused by other mediators present in the interleukin 1 preparation cannot be excluded. Moreover, in those studies the recovery was also very poor during the days after interleukin 1 exposure.39 40 In sharp contrast with the full recovery of the matrix seen with recombinant interleukin 1 in rabbits41 and in mice in this study. Five days after the last of the triple interleukin 1 injections inflammation was absent and cartilage was again heavily stainable with safranin O. At that stage an overshoot to enhanced proteoglycan synthesis was evident (data not shown).

The most outstanding action of interleukin 1 in vivo was its impressive longlasting inhibition of proteoglycan synthesis. This inhibition was not related to toxicity as full recovery was seen later. As stated above this inhibition contributes to proteoglycan depletion in the metabolically active murine cartilage matrix. It remains to be seen whether the inhibition of proteoglycan synthesis contributes in a similar degree to matrix depletion in older animals or in other species as it is obvious that it depends on turnover rates. Preliminary studies in our laboratory show that interleukin 1 induced even more prolonged inhibition of proteoglycan synthesis in the cartilage of old mice (18 months). A recent study with isolated chondrocytes showed the onset of interleukin 1 induced suppression of proteoglycan synthesis six hours after first exposure and complete recovery to normal synthesis was found 48 hours after withholding interleukin 1,53 effects in agreement with our in vivo results.

We found a comparable degree of suppression of proteoglycan synthesis and breakdown with recombinant interleukin 1α and β (table 2); this is consistent with other studies. The effects of interleukin 1 on rabbit chondrocytes (prostaglandin E2 synthesis, phospholipase A2 secretion, neutral protease release) or on human chondrocytes (caseinase secretion, prostaglandin synthesis) in the cartilage 15-17 in explants show that both interleukin 1 species are almost equally potent.54-57 This is not surprising because chondrocytes possess a common class of receptors for interleukin 1α and β, with similar affinity.58 59 The overall effect of interleukin 1 on cartilage was dramatic: a joint suppression of proteoglycan synthesis and enhancement of proteoglycan breakdown, which amplifies matrix depletion. Both phenomena are clearly seen in experimental arthritis models and interleukin 1 seems a likely cause of both effects. The follow up of interleukin 1 studies may elucidate the exact role of interleukin 1 in various forms of arthritis.

3 Oppenheim J J, Kovacs E J, Matsushima K, Durum S K. There is more than one interleukin 1. Immunology Today 1986; 7: 45-56.
15 Granstein R D, Margolis R, Mizel S B, Sauder D N. In vivo inflammatory activity of epidermal cell-derived thymocyte
Effects of interleukin 1 on synovial joints

activating factor and recombinant interleukin 1 in the

16 Bevilacqua M P, Pober J S, Wheeler M E, Cotran R S, Gibbmonre M A. Interleukin-1 activation of vascular endo-

17 Bevilacqua M P, Pober J S, Wheeler M E, Cotran R S, Gibbmonre M A. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of poly-

27 Bendtzen K, Petersen J, Halkjaer-Kristensen J, Ingemann-

33 Tyler J E. Articular cartilage cultured with catabolin (pig interleukin 1) synthesizes a decreased number of normal proteoglycan molecules. Biochem J 1985; 227: 869-78.

35 van den Berg W B, van de Loo F A J, Zwarts W A, Ottenness I G. Effects of murine recombinant interleukin 1 on intact homoglotous articular cartilage: a quantitative and auto-

42 Krujissen M W M, van den Berg W B, van de Putte L B A. Sequential alterations of particular structures in antigen-

48 Sedgwick A D, Moore A R, Al-Duai A Y, Edwards J C W, Willoughby D A. Studies into the influence of caggerean-

56 Saklatvala J, Bird T A. A common class of receptors for the two types of porcine interleukin-1 on articular chondrocytes. Lymphokine Res 1986; 5: 599-604.

57 Saklatvala J, Bird T A. Identification of a common class of high affinity receptors for both types of porcine interleukin-
Effects of murine recombinant interleukin 1 on synovial joints in mice: measurement of patellar cartilage metabolism and joint inflammation.

A A van de Loo and W B van den Berg

Ann Rheum Dis 1990 49: 238-245
doi: 10.1136/ard.49.4.238

Updated information and services can be found at:
http://ard.bmj.com/content/49/4/238

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/