Antenatal administration of aminopropylidene diphosphonate

Sir: Diphosphonates are now commonly prescribed drugs in the treatment of a variety of conditions, including the management of hypercalcaemia of malignancy.1 Aminopropylidene diphosphonate has been shown to be one of the most effective of this group of drugs for this condition.2

We would like to report a case in which aminopropylidene diphosphonate was given to a woman for malignant hypercalcaemia two weeks before she gave birth. We, and the manufacturers of this product, believe this to be the first report of such treatment. More importantly, the drug was given safely and without any adverse effect to mother or child. A 24 year old woman underwent lumpectomy and received local radiotherapy in 1984 for a scirrhous carcinoma of the breast. In August 1988 she attended an antenatal clinic, eight weeks' pregnant with her second child. At that time, she seemed perfectly well and the fetal ultrasound was normal. At 27 weeks' gestation she was admitted as an emergency to the obstetric unit with acute breathlessness and productive chest pain. Clinical and radiological examination showed bilateral pleural effusions, which were tapped and found to contain malignant cells confirming the woman's new onset of primary malignancy. She was also diagnosed as having lytic bony metastases. At that time her corrected serum calcium was normal, but her alkaline phosphatase was raised at 495 U/l (reference range at our laboratory 8–280 U/l). Treatment was started with eparubicin 90 mg/m² and prednisolone 40 mg for five days, every three weeks. Careful monitoring of the fetus showed normal development. After three courses her effusions had not recurred and her symptoms improved. A biochemical screen done one week later showed a serum calcium concentration of 3.75 mmol/l, corrected for a serum albumin of 31 g/l, serum phosphorus of 1.0 mmol/l, and alkaline phospha-tase 506 U/l. Her parathormone level was <0.8 pmol/l (reference at our laboratory 1–5 pmol/l). At 34 weeks' gestation she was treated initially with frusmide and with saline intravenously. After much deliberation and discussion with the medical advisers of the manufacturing company we gave 30 mg of aminopropylidene diphosphonate as a four hour infusion. Her serum calcium concentra-tion fell gradually over the next two weeks. At 36 weeks, with a corrected serum calcium of 3.15 mmol/l, she gave birth to a healthy male child weighing 3.06 kg by spontaneous vertex delivery. The child's total plasma calcium was 2.05 mmol/l (reference range 2.2–2.4 mmol/l) at birth but gradually, over the next five days, fell to 1.65 mmol/l, despite calcium supplementa-tion in feeds and intravenous calcium gluconate. Serum albumin at that time was 33 g/l. Four days after birth, the infant's parathormone level was 2.01 pmol/l (reference range 1.0–2.0 pmol/l). The child's total plasma calcium was normal five days after birth. One week after delivery the mother's serum calcium was 2.50 mmol/l. Subsequently, the child has had normal growth and development and, with further chemotherapy, the mother is alive with stable disease 10 months after the delivery of her child. It is difficult for us to assess whether the transient hypocalcaemia noted in the infant was due to fetal parathyroid suppression by maternal hypercalcaemia or whether it was an effect of aminopropylidene diphosphonate crossing the placental barrier and exerting a direct effect on the fetus.

Ciba-Geigy have informed us that no terato-genic effects were observed in the fetuses of animal reproductive studies were only performed with the oral preparation, however. They have no data as yet for the long term effects on the progeny of the animals tested (P Graepel, R Zell, personal communication). We suggest that the parathormone level measured in the child four days after birth, in the face of significantly low total plasma calcium, is inappropriately low. Thus it seems more likely that the maternal hypercalcaemia caused parathyroid suppression in the neonate. Aminopropylidene diphosphonate has very few side effects. In the extremely rare situation in which one might consider giving this agent to a pregnant mother we suggest careful monitoring of serum calcium for at least a week after delivery. In conclusion, aminopropylidene diphosphonate was given to the mother in the third trimester with no adverse effects on the delivery of the fetus or on the fetus itself.

D J DUNLOP
M SOUKOP
Department of Medical Oncology
Royal Infirmary
Glasgow G4 OSF

H P MCEWAN
Royal Maternity Hospital
Glasgow G4

Fatal acute pyelonephritis following pulsed methylprednisolone for rheumatoid arthritis

Sir: We read with interest your two recent articles on pulse methylprednisolone therapy in rheumatoid arthritis.2 3 Although the evidence is strong that such treatment can induce rapid relief of inflammatory joint symptoms, we fear that the benefit ratio may not be as favourable as suggested. We report here a fatal case of acute pyelonephritis following pulse methylprednisolone therapy for rheuma-toid arthritis.

A 71 year old woman with a six year history of seronegative rheumatoid arthritis (American Rheumatism Association criteria, 1987) was admitted with a recent deterioration of her arthritis. She denied recent urinary symptoms and denied any recent infection. She had had a total hysterectomy with bilateral oophorectomy at the age of 47. There was no history of hypertension or diabetes mellitus. Examination confirmed an active, symmetrical polyarticular inflammatory joint disease, but was otherwise unremarkable. Investigation showed an erythrocyte sedimentation rate of 96 mm/h, white cell count 7×10⁹/l, 80% granulocytes, urine analysis negative for protein, blood, and glucose, and mid-stream urine negative for white cells and organisms on microscopy and culture.

On the day of her admission she was given the first of three alternate day doses of 1 g methylprednisolone succinate i.v., intravenous saline intravenous over 30 minutes. On day 2 treatment was started with azathi-primine 50 mg/day. During the following week her joint symptoms improved and on day 8 the azathioprine was increased to 50 mg twice daily with some effectiveness. On day 10 she developed a fever of 39–3°C and urinary incontinence. Blood and midstream urine were collected and treatment was commenced with oral amoxicillin 500 mg eight hourly started immediately. Microscopy and cultures were subsequently found to be negative. Her blood count at that stage included a total white cell count of 16.3×10⁹/l, 89% neutrophils, 5% lymphocytes, 1% monoblast 101 g/l. A further investigation the following day showed feverishness, developed left iliac fossa pain, and became confused. The azathioprine was discontinued after a cumulative dose of 600 mg and the amoxicillin reduced by intravenous infusion of 50 g eight hourly and rectal metronidazole 1 g eight hourly. Fluids were given intravenously.

Subsequent deterioration was rapid and she died on the 12th day of her admission. Autopsy confirmed a right iliac fossa abscess and bilateral acute pyelonephritis, confirmed on histological examination, with microabscess formation.

Uncontrollable infection in this patient may have been in part due to pulse methylprednisolone therapy, azathioprine, the underlying rheumatoid disease, or a combination of all three. There was, however, no evidence of marrow suppression attributable to azathioprine. Fatal infections following pulse methylprednisolone therapy have been reported in renal transplant recipients.4 Other fatalities have been attributed to this form of therapy.5,6,7 It is difficult to assess the risk of serious adverse reactions from published data as most studies were not designed specifically to consider this event. One reason for the relatively high incidence of adverse reactions noted by Gairns and Paulus (nine of 21 rheumatoid patients) may be that it was the purpose of their investigation to highlight such events.8

The benefits of pulse methylprednisolone therapy should also not be overstated. Many studies indicate a return to baseline of indices of response within eight weeks of methylprednisolone alone.9 Erosions have been shown to progress despite methylprednisolone treatment. Controlled studies have shown these treatments have failed to show any improve-ment in response rates or risks of adverse reactions to slow acting antirheumatic agents compared with pulse methylprednisolone therapy.9 The benefits, then, of a short term anti-inflammatory effect of pulse methylprednisolone therapy should be weighed carefully against the risks of adverse reactions, sometimes fatal. We agree with Smith et al that pulse methylprednisolone may be useful in selected patients, particularly 'between initia-tion and response' with antirheumatic agents, but would be extremely wary of 'allowing pulse therapy to become an outpatient procedure'.10 Used cautiously and in the lowest effective
Response criteria for slow acting antirheumatic drugs

Sirs: With great interest we read the recent article by Scott et al on response criteria for slow acting antirheumatic drugs.1 We agree with the concept of development of an index of response to slow acting antirheumatic drugs. The authors emphasise the development of a single index and its relation to clinical practice. The basis for this index was a consensus meeting of 16 rheumatologists. Later the response index was used in the evaluation of penicillamine and sulphasalazine. As the authors explained, however, the index has not been validated.

We have attempted to determine which variables are most useful for measuring disease activity. We evaluated, therefore, the judgment of doctors in clinical practice for high and low disease activity.2 The study group comprised 113 patients with recently diagnosed rheumatoid arthritis who were studied prospectively. The follow up ranged from two to 39 months (1816 check ups). We thus obtained a disease activity score (DAS) composed of the Ritchie articular index, the number of swollen joints, erythrocyte sedimentation rate, and gastro-intestinal analogue scale. Subsequently, the DAS was validated by comparison with various single and composite indexes used to measure disease activity, with attention to their correlation with radiographic damage and functional capacity (in preparation). This validation was made with an extended group of patients from the same prospective study (follow up range eight to 58 months, 6011 check ups). The DAS and the Mallya index were found to be the most valid variables for measuring disease activity.

In comparison with the response index proposed by Scott et al, the DAS has several advantages and one disadvantage. The disadvantage is that the DAS is not as simple to compute as the response index; a calculator is needed. To overcome this problem we have constructed a nomogram, making it easy to determine the DAS in little time without a calculator. The advantages are threefold: first of all the DAS is a reflection of the decision making of doctors in clinical practice. What happens in practice has been expressed in facts and numbers. Hence there is little distance between clinical practice and the outcome variable in every trial with slow acting antirheumatic drugs. Secondly, the DAS has been shown to be a valid measurement. Last not least, the DAS is a variable with a continuous scale. Therefore no arbitrary division of the grades of response has to be made. The mean DAS in our large database was 3-25 (range 0-30-8-30). The 'sensitivity to change' was 1-08—that is, the difference which can be observed independently of measurement error and biological variation.

In conclusion, the DAS is a valid measurement for evaluation of clinical trials. Its advantage over Dr Scott's proposed response index and other existing indexes is that it needs no further validation and is ready to use.

Désirée F M Van Der Heijde
Piët J C M Van Riel
Martijn A Van T Hof
Levínus B A Van De Putte
University Hospital Nijmegen
Department of Rheumatology
Postbus 9109
6500 HB Nijmegen
The Netherlands

Correlation of iron exchange between the oral iron chelator 1,2-dimethyl-3-hydroxypropyrid-4-one (L1) and transferrin and possible aetiological effects of L1 in rheumatoid arthritis

Sirs: Iron and ferritin are probably able to stimulate local free radical damage in joints of patients with rheumatoid arthritis (RA) by forming hydroxyl radicals3 and in this way contribute to persistence of synovitis.4 In the anaemia of chronic disease in RA iron stores are increased,5 but they are probably less available for erythropoiesis.6,7 Owing to the possible deleterious effects of iron stores on RA activity the treatment of RA with desferrioxamine, a parameter iron availability and hence erythropoiesis. Giordano et al found a haemoglobin increase after treatment with desferrioxamine.8 We confirmed their findings using a new oral iron chelator—1,2-dimethyl-3-hydroxypropyrid-4-one (L1).9 L1 has been shown to be an effective iron chelator10 with promising potential in the treatment of haematosiderosis and, possibly RA. If increased bone marrow iron availability is the mechanism through which a haemoglobin increase occurs after iron chelation it can be assumed that this takes place through a higher iron saturation of transferrin, which indeed was the case in our study.10

Hewitt et al found that L1 released 90% of iron-59 (59Fe) bound to transferrin.11 This implies that after L1 iron chelation a high proportion of iron may be bound to L1, instead of transferrin, suggesting a decrease rather than an increased amount of iron bound to transferrin available for bone marrow. We therefore examined both the amount of L1 to iron chelation and of human transferrin to remove iron from L1.

The following method was used: 388 μL of L1 (0-1 mg/ml) was added to 100 μL of 5Fe-trasnferrin (97 mg/ml). After incubation the iron was precipitated out by gel chromatography (Sephadex G 50; pH 7-4 with an elution velocity of 32 ml/h, recovery 76%). In the second experiment 20 μl (272 pg) of 5Fe-Trf and 148 μl (2 mg/ml) of FeCl3 were added to another 5ml of L1. Human apotransferrin (3 mg) was added to 1 ml of the 5Fe-L1 solution, after which fractionation was performed similarly (Sephadex G 50; pH 7-4; velocity of 32 ml/h, recovery 75%). The table shows the results obtained. Activity was measured with a Packard-autogamma 500 C.

The results obtained indicate that L1 is able to remove a substantial amount of iron from transferrin, confirming findings of Hewitt et al,11 depending on the time of incubation and the amounts of L1 and transferrin added. It was also found, however, that apotransferrin can release iron from L1 depending on the same factors. Thus, possibly, in a patient treated with L1, the iron saturation of transferrin and L1, determines the direction of iron exchange between them. In the anaemia of chronic disease in RA iron saturation of transferrin generally is low12 so it is possible that iron exchange between ferritin and transferrin mediated by L1 takes place, explaining the haemoglobin increase after iron chelation in these patients.8,13 It has also been found that L1 diffuses easily through the erythroblast membrane14 and thus it may incorporate iron into erythroblasts and hence

Iron-59 exchange after incubation of (A) L1-59Fe and (B) apotransferrin and 59Fe bound to L1

\[
\begin{array}{cccc}
\text{A} & \text{(L1-59Fe-TFR)} & \text{B} & \text{(59Fe-L1-aFeTFR)} \\
\text{Recovery}\% & 76 & 75 & 78 \\
\text{Transferrin activity}\% & 64 & 65 & 78 \\
\text{L1 activity}\% & 64 & 74 & 88 \\
\text{5Fe transfert}\% & 51 & 2 & 83 \\
\end{array}
\]

1L1 = 1,2-dimethyl-3-hydroxypropyrid-4-one; TFR = transferrin.

The double bond, present in L1, is generally removed by lipase (in preparation).
Fatal acute pyelonephritis following pulsed methylprednisolone for rheumatoid arthritis.

D A Walsh and R A Durance

Ann Rheum Dis 1990 49: 955-956
doi: 10.1136/ard.49.11.955-b