settled and the biochemical abnormalities came back to normal, including parathyroid hormone of 0.48 ng/l.

Our patient had dietary osteomalacia and secondary hyperparathyroidism which settled completely with calciferol treatment.

Department of Rheumatology, St George’s Hospital, London SW17 0QT

A H SULTAN F E BRUCKNER

Reference


Sir, The case report presented by Drs Sultan and Bruckner concluding that the dactylitis seen in their patient was a manifestation of secondary hyperparathyroidism is in keeping with conclusions we published previously.1

We pointed out that the radiological bone changes in our patient’s hand were confined to the middle phalanx, and although they may well have been caused directly by the osteomalacia, it seemed more likely that they were a manifestation of secondary hyperparathyroidism. Clearly the finding of a raised parathyroid hormone is not unexpected and does not prove that the radiological changes were due to hyperparathyroidism, particularly as in our case the histology was non-specific, though tetracycline labelling was not performed.

Department of Rheumatology, The London Hospital, Whitechapel, London E1 1BB

J D PERRY A S M JAWAD

Reference


Inhibition of neutrophil myeloperoxidase by rabbit anti-human myeloperoxidase

Sir, In the paper by Nurcombe and Edwards published in the Annals1 the authors claim to have shown inhibition of fluid phase neutrophil myeloperoxidase by the IgG fraction of an anti-myeloperoxidase antibody in a chemiluminescence system. But incredibly for such a reputable scientific journal they have been allowed to present their data (Fig. 5) without any reference to the effect of normal rabbit (control) IgG on fluid phase myeloperoxidase in the same system. Even if it had had no effect, this should have been mentioned. We have been using a similar system to evaluate the effect of antibodies to myeloperoxidase on the activity of the fluid phase enzyme, and there is undoubtedly considerable protein quenching by normal immunoglobulin (with apparent inhibition) of the chemiluminescence generated by fluid phase neutrophil myeloperoxidase, compared with activity in the absence of normal IgG. This must be taken into consideration in the interpretation of any ‘inhibition’ occurring in the presence of anti-myeloperoxidase IgG.

Regional Dept of Immunology, East Birmingham Hospital, Bordesley Green East, Birmingham B9 5ST

R A THOMPSON S S LEE

Reference


Sir, Drs Thompson and Lee comment on the fact that in Fig. 5 (and 6) of our recent paper ‘Role of myeloperoxidase in intracellular and extracellular chemiluminescence of neutrophils’1 we did not state the effects of equivalent amounts of non-immune IgG on this system. In such experiments we routinely measure the effects of non-immune IgG2 3 as some types of chemiluminescence are susceptible to non-specific quenching by soluble proteins. The problem of non-specific protein quenching by antibodies is greatly reduced when IgG fractions are purified from high titre antisera. In our experiments such non-specific quenching of extracellular chemiluminescence by equivalent amounts of non-immune IgG was only 5–10% of that observed by our anti-(myeloperoxidase) IgG and hence the effects noted in Figs 5 and 6 were due to specific inhibition of myeloperoxidase.

Dept of Biochemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX

STEVEN W EDWARDS HEATHER L NURCOMBE

References

Inhibition of neutrophil myeloperoxidase by rabbit anti-(human myeloperoxidase)

R A Thompson and S S Lee

Ann Rheum Dis 1989 48: 615
doi: 10.1136/ard.48.7.615

Updated information and services can be found at:
http://ard.bmj.com/content/48/7/615.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/