Case report

Large granular lymphocytosis associated with rheumatoid arthritis

A SAMANTA, I GRANT, F E NICHOL, J H PRINGLE, J K WOOD, AND A C CAMPBELL

From the Leicester Royal Infirmary, Leicester; Barking Hospital, Essex; and the University Department of Pathology, Leicester Royal Infirmary

SUMMARY A 74 year old woman with rheumatoid arthritis, hepatosplenomegaly, neutropenia, and peripheral blood lymphocytosis is described. The lymphocytes had a large granular morphology and expressed a CD3+ CD8+ Leu7+ surface antigen phenotype. They did not have natural killer cell function. Southern analysis of the lymphocyte DNA using two restriction enzymes showed a rearranged pattern for the T cell receptor β chain gene, indicating a monoclonal lymphoproliferation. Large granular lymphocytosis is a rare and heterogeneous phenomenon, which has become more clearly characterised through the application of molecular biology techniques. Most cases appear to be forms of T cell leukaemia with a chronic benign course. The association between rheumatoid arthritis and large granular lymphocytosis is emphasised.

Key words: T cell receptor β chain.

Within the last few years a lymphocyte sub-population has been recognised known as the large granular lymphocyte population. Morphological characteristics include a large amount of cytoplasm and azurophilic granules. Most natural killer (NK) cells are found within this population, though it is not homogeneous and includes more than one cell type as defined by monoclonal antibodies to surface antigens. Abnormal expansion of blood large granular lymphocytes is an uncommon phenomenon with a variety of clinical associations. A syndrome comprising large granular lymphocytosis, neutropenia, and splenomegaly has been well defined. We describe here a case of rheumatoid arthritis associated with a monoclonal expansion of the large granular lymphocyte subpopulation.

Case report

A 74 year old woman presented with a nine month history of peripheral symmetrical polyarthralgia and morning stiffness. She had a seropositive erosive arthropathy with hepatomegaly of 4 cm and splenomegaly of 3 cm. There was no lymphadenopathy either clinically or on whole body computed tomography scan. Routine biochemical and radiological investigations were normal.

Haemoglobin was 101 g/l, red blood cells 4.3×10¹²/l (normal 3.9–5.6×10¹²/l), platelets 298×10⁹/l (normal 150–400×10⁹/l), white cell count 6.9×10⁹/l (normal 4–11×10⁹/l), neutrophils 0.47×10⁹/l (normal 1.5–4.0×10⁹/l), and lymphocytes 6.02×10⁹/l (normal 1.5–4.0×10⁹/l). Neutrophil antibodies were not detected.

Bone marrow examination showed a marked infiltration with mature looking lymphocytes. Erythropoiesis was micronormoblastic and granulopoiesis was hypoplastic.

Lymphocyte analysis with a panel of monoclonal antibodies was done by indirect immunofluorescence and flow cytometry with a fluorescent activated cell sorter (Becton Dickinson). Natural killer cell function was assessed in a ⁵¹Cr release assay using the K562 human myeloid cell line as target. The immunophenotyping gave the following results: CD2 (T11) 10% positive, CD5 (T1) 5%,
CD3 (T3) 94%, CD4 (T4) 8%, CD8 (T8) 87%, Leu 7 63%, CD16 (Leu 11) 3%, HLA-DR 44%. About 4% of the cells were B cells (CD24 and surface immunoglobulin positive). In the NK cell functional assay the lymphocytes showed very low cytotoxic activity (<1 lytic unit per 10⁶ lymphocytes, normal range 6–80). Most of the cells therefore expressed the abnormal T cell phenotype CD2⁻CD5⁻CD3⁺CD4⁻CD8⁺ Leu 7⁺ HLA-DR⁺. Neither the NK cell marker CD16 (Leu 11) nor NK cytotoxic function were present.

A Southern blot analysis was carried out for rearrangements of the gene for the β chain of the T cell antigen receptor on DNA extracted from blood mononuclear cells. A probe to the Cβ1 constant region of this gene was prepared from the Bgl II fragment of the cDNA Jur-β2 clone. In germ line DNA (non-rearranged) this probe detects fragments of molecular weight 24 kb after digestion with the enzyme Bam HI, and 4 kb and 12 kb using the enzyme Eco RI. Figure 1 shows the results and indicates a rearrangement in the T cell receptor β chain gene, involving the Cβ2 region of one allele, appearing as an additional band on the Bam H1 digest. The Eco R1 digest showed deletion of the 12 kb Cβ1 fragment, leaving only a weak germ line band. These results indicate a monoclonal origin for the cells and are consistent with the abnormal T cell immunophenotype.

Discussion

We have described a 74 year old woman with rheumatoid arthritis of recent onset, hepatosplenomegaly, neutropenia, and large granular lymphocytosis (LGL). This form of lymphocytosis is uncommon. Neutropenia and splenomegaly appear to be almost constant features, and rheumatoid arthritis (RA) is a frequently associated condition. Barton et al reviewed 14 such cases, and Newland et al described RA in seven of 21 patients with LGL. The condition is distinguishable from Felty’s syndrome by the lymphocytosis, although, in both, antineutrophil antibodies and neutrophil binding immune complexes may play a part in producing neutropenia.

Surface marker and functional analyses have shown LGL to be heterogeneous. Most cases express the surface antigens CD3, CD8, and Leu 7. They therefore appear to represent an expanded T cell subset, though they generally lack or express weakly the ‘pan-T’ marker CD5 (T1). The case described here was of this phenotype but was unusual in its lack of expression of CD2 (T11).

Although NK cell function is associated among normal blood lymphocytes with the large granular cell, the abnormal lymphocytes of patients with LGL rarely show this activity, and their surface markers are those of T cells. Rare cases of LGL with NK function have been described, but they have a distinct immunophenotype, being CD2 (T11)⁺ and CD16 (Leu 11)⁺ without T cell restricted surface antigens (CD3, CD4, CD8) or evidence of T cell antigen receptor gene rearrangement. They therefore represent proliferations of lymphocytes whose phenotype corresponds to normal NK cells.

Most patients with LGL have a benign clinical course, and some are asymptomatic for long periods of follow up. The most serious complication of the disease is bacterial infection associated with severe neutropenia. The question of whether LGL is a T cell leukaemia or some form of reactive lympho-
cytosis was unresolved until the recent application of
gene probe analysis allowed determination of the
monoclonality or polyclonality of the cells. Such
analyses have shown a monoclonal pattern of T cell
receptor β chain rearrangement in most cases of
LGL with neutropenia.6 9 10 17 A few proliferations
are polyclonal, and it is not clear whether the LGL
associated with RA is always monoclonal. Our
patient showed monoclonality, and this lymphocyto-
sis can therefore be regarded as a form of T cell
chronic leukaemia. Its relative malignant or benign
nature can only be determined by long term follow-
up.

The association between RA and LGL is
interesting, though an aetiopathogenic link between
the conditions is not clear. In most reported cases
the features of LGL developed only after erosive
arthritis had been present for many years. In only
two of 14 cases reviewed did Barton et al find
simultaneous onset of the two conditions.4 In most
cases, therefore, the T cell lymphoproliferation may
be interpreted as a consequence of prolonged
abnormal activation of the immune system associ-
ated with autoimmunity. A recent report of 12
cases of LGL indicated the presence of antibodies
reacting with the retrovirus HTLV-I in six of the
patients. Four of these cases had arthritis.9 These
findings raise the interesting possibility that both
the arthritis and the (leukaemic) T cell proliferation
may be the result of infection by a T lymphotropic
virus related to HTLV-I.

In conclusion, we describe here an unusual case of
late onset RA with large granular lymphocytosis and
neutropenia. Immunophenotyping and gene probe
analysis indicated a monoclonal T cell lympho-
proliferation. We draw attention to the clinical
association between this type of T cell leukaemia
and RA.

Addendum

Since writing this report the patient was admitted as
an emergency with peritonitis due to a left pericolic
abscess. She died shortly after surgery and at
necropsy the immediate cause of death was deter-
mined to be coronary insufficiency.

The gene arrangement and immunophenotyping analyses were
supported by a grant from the Cancer Research Campaign.

References

1 Timonen T, Ortaloi J R, Herberman R B. Characteristics of
human large granular lymphocytes and relationships to natural
2 Ortaloi J R, Sharrow S O, Timonen T, Herberman R B.
Determination of surface antigens on highly purified human NK
cells by flow cytometry with monoclonal antibodies. J Immunol
3 Newland A C, Catovsky D, Linch D, et al. Chronic T cell
lymphocytosis: a review of 21 cases. Br J Haematol 1984; 58:
W J, Grossi C E. Rheumatoid arthritis associated with
expanded populations of granular lymphocytes. Ann Intern Med
5 West W H, Cannon G B, Kay H D, Bonnard G D, Herberman
R B. Natural cytotoxic reactivity of human lymphocytes against
a myeloid cell line: characterisation of effector cells. J Immunol
6 Waldmann T A, Davis M M, Bongiovanni K F, Korsmeyer S J.
Rearrangements of genes for the antigen receptor on T cells as
markers of lineage and clonality in human lymphoid neoplasms.
7 Yoshikai Y, Anonatious D, Clark S P, et al. Sequence and
epression of transcripts of the human T cell receptor β-chain
8 Bucknall R C, Davis P, Bacon P A, Verrier-Jones J. Neutro-
penia in rheumatoid arthritis. Studies on possible contributing
reactivity to human T-cell leukaemia/lymphoma virus type 1
proteins in patients with large granular lymphocytic leukaemia.
10 Berliner N, Duby A D, Linch D C, et al. T cell receptor gene
rearrangements define a monoclonal T cell proliferation in
patients with T cell lymphocytosis and cytopenia. Blood 1986;
lymphocyte/natural killer cell proliferative disease: clinical and
12 Loughran T P, Draves K E, Starkbaum G, Kidd R, Clark E A.
Induction of NK activity in large granular lymphocyte
leukaemia: activation with anti-CD3 monoclonal antibody and
13 Tagawa S, Tokymine Y, Ueda E, et al. Leu 11+ Ty cell chronic
lymphocytic leukaemia with partially activated natural killer
function and its further activation by recombinant IL2 in vitro.
granular lymphocyte proliferations: morphological, immuno-
logical and molecular analysis in seven patients. Br J Haematol
15 Lanier L L, Phillips J H, Hackett J, Tutt M, Kumar V. Natural
killer cells: definition of a cell type rather than a function.
16 Trinchieri G, Perussia B. Human natural killer cells: biological
17 Rambaldi A, Pelicci P-G, Allavena P, et al. T cell receptor
β chain gene rearrangements in lymphoproliferative disorders of
Large granular lymphocytosis associated with rheumatoid arthritis.

A Samanta, I Grant, F E Nichol, J H Pringle, J K Wood and A C Campbell

doi: 10.1136/ard.47.10.873

Updated information and services can be found at:
http://ard.bmj.com/content/47/10/873

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/