Annals of the Rheumatic Diseases, 1987; 46, 617–623

Case report

Chronic predominant interstitial nephritis in a patient with systemic lupus erythematosus: a follow-up of three years and review of the literature

HANAN GUR,1 YURI KOPOLOVIC,2 AND DAVID J GROSS1*

From the Departments of 1Medicine ‘A’ and 2Pathology, Hadassah University Hospital, Jerusalem, Israel

SUMMARY Predominant interstitial nephritis is a rare manifestation of systemic lupus erythematosus. Only seven cases have been reported in the literature. Owing to the rarity of this entity, the natural history of predominant interstitial nephritis in lupus has not been adequately recorded and an appropriate therapeutic approach has yet to be defined. In this report we present the case of a 25 year old woman with active systemic lupus erythematosus complicated by kidney failure and renal tubular acidosis due to predominant interstitial nephritis. We describe the course of her disease over a three year period. Seven additional patients with systemic lupus erythematosus and predominant interstitial nephritis are reviewed.

Key words: renal failure.

Tubulointerstitial involvement of the kidneys is a well recognised feature of lupus nephritis, occurring in 66% of kidney biopsy specimens of patients with systemic lupus erythematosus.1 This extraglomerular disease occurs mainly in patients with proliferative and membranous lupus nephritis.1 Therefore, the clinical significance of the renal interstitial disease is invariably obscured by the concomitant glomerular damage. The occurrence in patients with systemic lupus erythematosus of predominant interstitial inflammation with minimal glomerular involvement is rare, and only seven cases have been reported. Most of these patients presented with acute renal failure,2–5 and two patients had chronic renal disease.6 7

In this report we present the natural history over a three year period of predominant interstitial nephritis in a 25 year old woman with systemic lupus erythematosus and review the other reported cases.

Case report

A 25 year old woman was admitted to our hospital in April 1982 because of pneumonia and measles. She had a past history of non-thrombocytopenic purpura in 1965, and over the last few years she had had recurrent episodes of polyarthritides, pericarditis, pleuritis, maculopapular rashes, and anaemia of 75–100 g/l haemoglobin, but was not referred for further medical evaluation. There was no history of any drug intake before admission (e.g., non-steroidal anti-inflammatory agents) or features of Sjögren’s syndrome. Physical examination disclosed a pale, thin, tachypneic young woman. Her temperature was 40°C, blood pressure 100/80 mmHg, and pulse rate 104/min. A morbilliform rash was noted over the face and trunk, as well as enanthema and Klopik’s spots. Bilateral crepitant rales were heard over the lungs and a 2/6 systolic ejection type murmur was noted. There was mild hepatosplenomegaly and no pedal oedema.

Initial laboratory tests showed a sedimentation rate of 90 mm/h (Westergren), a haemoglobin value of 91 g/l, a white blood cell count of 17.6 × 10⁹/l (polymorphonuclear neutrophils 92%), and a platelet count of 105 × 10⁹/l. The urine analysis showed positive protein, few erythrocytes, and leucocytes without casts. The urea level was 16.9 mmol/l, creatinine 354 μmol/l, and the creatinine clearance was 11 ml/min. The sodium value was 142 mmol/l, potassium 3.1 mmol/l, chloride 125
mmol/l, and bicarbonate 7 mmol/l. The plasma pH was 7-2 and the urine pH did not fall below 6-5. The 24 hour urinary protein was 1-2 g. The electrocardiogram showed sinus tachycardia with diffuse ST-T changes that reverted to normal during the hospitalisation. A chest radiogram demonstrated multiple lung infiltrations.

Measles complicated by bronchopneumonia was diagnosed on the basis of the clinical data and the epidemiological set up of a measles outbreak at that time. Fluids, bicarbonate, hydrocortisone, and erythromycin were administered, and the patient improved within a few days. The fever and the rash subsided, the lungs became clear, and a repeat chest radiogram showed complete resolution of the pneumonia. In view of her past history of recurrent arthritis, pericarditis, pleurisy, and anaemia, as well as the persistent azotaemia, hypokalaemia, and renal tubular acidosis, however, further diagnostic evaluation was pursued.

The fluorescent antinuclear antibody (FANA) was highly positive on a qualitative scale (+3/+3) and in a titre of 1/320. The anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibody was 3-4 μg bound DNA/ml serum (normal values in our laboratory 1-0-1-4 μg DNA/ml), and the anti-SM antibody test was positive. The level of the third component (C3) was 330 mg/l (normal range (NR) 600–1200 mg/l). The albumin level was 29 g/l (NR 35–50), globulin 54 g/l (NR 25–30). IgG 36-54 g/l (NR 8–17 g/l), IgM 1-01 g/l (NR 0-65–2-8), and IgA 1-64 g/l (NR 0-9–4-5). The lupus erythematous cell preparation (LE cell), the Rose-Waaler, latex. Venereal Disease Research Laboratory (VDRL), and the Coombs’ tests were all negative.

A plain film of the abdomen did not show nephrocalcinosis. Ultrasound examination of both kidneys showed them to be of normal size and configuration without deformations, cysts, or calculi. A diagnosis of systemic lupus erythematous was established and a percutaneous renal biopsy was performed, which showed predominant interstitial nephritis (to be detailed below).

The patient was later discharged without any treatment.

Results

RENAL HISTOPATHOLOGY

Light microscopy

The kidney biopsy specimen contained seven glomeruli. Of these, one had periglomerular fibrosis and one was sclerotic. The other glomeruli showed a minimal increase of mesangial cells without thickening of the capillary walls (Fig. 1). The main abnormality was in the interstitium, which showed focal mononuclear cell infiltration and groups of atrophic tubuli containing hyaline casts (Fig. 2).

Immunopathological examination

Five glomeruli were examined. IgG deposits were demonstrated along Bowman’s capsule but not in the glomeruli. Speckled antinuclear antibodies of IgG were seen in the tubular epithelial cells. Granular C3 deposits were shown along the tubular basement membrane. Mild mesangial deposits of C3 were also seen.

Electron microscopy

No increase of mesangial cells or mesangial matrix was observed and no epithelial foot process fusion was seen. There were no electron dense deposits in the mesangium or along the capillary basement.

![Fig. 1 Glomerulus with minimal mesangial hypercellularity. (Haematoxylin and eosin.)](image1)

![Fig. 2 Mononuclear cell interstitial infiltration and tubular atrophy. (Haematoxylin and eosin.)](image2)
We have presented a patient who had clinical and histological evidence of active SLE, but the association of renal failure with predominantly tubulointerstitial nephritis in a patient with SLE was not described. Sjögren's syndrome, which was not evident, was associated with systemic lupus erythematosus and prednisolone treatment.

Table 1: Laboratory findings during a follow up of three years in a patient with systemic lupus erythematosus and predominant interstitial nephritis

<table>
<thead>
<tr>
<th>Date</th>
<th>Haemoglobin (g/dl)</th>
<th>WBC x 10^9/l</th>
<th>Platelets x 10^9/l</th>
<th>Urine analysis</th>
<th>Serum creatinine (mmol/l)</th>
<th>Creatinine clearance (ml/min)</th>
<th>FANA* (µg/ml serum)</th>
<th>Anti-dsDNA</th>
<th>Anti-SM</th>
<th>C3 (mg/dl)</th>
<th>C4 (mg/dl)</th>
<th>CH₅₀ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1982 discharge</td>
<td>90</td>
<td>7.1</td>
<td>105</td>
<td>+ Protein, few RBC</td>
<td>12.0</td>
<td>212</td>
<td>11</td>
<td>+3</td>
<td></td>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 1982</td>
<td>106</td>
<td>4.0</td>
<td>97</td>
<td>+ Protein</td>
<td>12.9</td>
<td>248</td>
<td>17</td>
<td>+3</td>
<td>+3</td>
<td>380</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>June 1983</td>
<td>84</td>
<td>3.7</td>
<td>126</td>
<td>+ Protein</td>
<td>12.6</td>
<td>256</td>
<td>18</td>
<td>+3</td>
<td></td>
<td>330</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Apr 1983</td>
<td>120</td>
<td>4.5</td>
<td>58</td>
<td>Protein, few RBC</td>
<td>12.0</td>
<td>265</td>
<td>16</td>
<td>+3</td>
<td>+3</td>
<td>1/320</td>
<td>1/180</td>
<td></td>
</tr>
<tr>
<td>Sept 1983</td>
<td>103</td>
<td>4.6</td>
<td>248</td>
<td>+ Protein, few RBC</td>
<td>11.1</td>
<td>256</td>
<td>27</td>
<td>+3</td>
<td>+3</td>
<td>1/80</td>
<td>1/180</td>
<td></td>
</tr>
<tr>
<td>Sept 1984</td>
<td>106</td>
<td>5.6</td>
<td>200</td>
<td>Protein, few RBC</td>
<td>10.0</td>
<td>239</td>
<td>24</td>
<td>+3</td>
<td>+3</td>
<td>330</td>
<td>80</td>
<td>11</td>
</tr>
<tr>
<td>May 1985</td>
<td>114</td>
<td>5.7</td>
<td>148</td>
<td>Protein, few RBC</td>
<td>9-3</td>
<td>115</td>
<td>33</td>
<td>+1/320</td>
<td>+1/320</td>
<td>300</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

*Out of four grades or titre. WBC = white blood cells; RBC = red blood cells; FANA = fluorescent antinuclear antibodies; C3 = third component of complement; C4 = fourth component of complement; CH₅₀ = 50% activity of total haemolytic complement.

†Normal ranges: C3 600-1200 mg/l; C4 200-400 mg/l; CH₅₀ 20-40 U/ml.
Table 2 Clinical and laboratory features of seven patients with systemic lupus erythematosus and predominant tubulointerstitial nephritis

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Presentation of the tubulo-interstitial disease</th>
<th>Associated clinical features</th>
<th>Urine analysis</th>
<th>Serum urea (mmol/l)</th>
<th>Serum creatinine (μmol/l)</th>
<th>Creatinine clearance (ml/min)</th>
<th>C3 (mg/l)</th>
<th>CH₅₀ (U/ml)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (2)*</td>
<td>52</td>
<td>F</td>
<td>Acute renal failure</td>
<td>Active SLE, polyarthritis, pleuropericarditis, rash, history of convulsions</td>
<td>+ 2 Protein, no cells or casts</td>
<td>20-9</td>
<td>557</td>
<td>—</td>
<td>+</td>
<td>820</td>
<td>200 (normal) The first reported case of isolated lupus interstitial nephritis. Treated with corticosteroids. Improved slightly, no follow up</td>
</tr>
<tr>
<td>2 (6)*</td>
<td>23</td>
<td>F</td>
<td>Renal tubular acidosis. Completely asymptomatic</td>
<td>A past history of encephalitis, malar rash, arthritis</td>
<td>Clear sediment, urine pH 6.4 in the presence of arterial pH 7.27</td>
<td>—</td>
<td>—</td>
<td>110</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3 (4)*</td>
<td>30</td>
<td>F</td>
<td>Acute oliguric renal failure</td>
<td>Fever, polyarthritis, pleuropericarditis, minimal lupus nephritis (previous biopsy)</td>
<td>No proteinuria, 5–8 RBC, 10–20 WBC</td>
<td>17-6</td>
<td>239</td>
<td>18</td>
<td>1/640</td>
<td>34</td>
<td>(normal) High dose corticosteroid treatment. Renal function improved</td>
</tr>
<tr>
<td>4 (5)*</td>
<td>42</td>
<td>F</td>
<td>Acute anuria</td>
<td>Fever, polyarthritis, pleuropericarditis, facial erythema, pneumonia</td>
<td>Mild proteinuria</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td>240</td>
<td>—</td>
</tr>
<tr>
<td>5 (5)*</td>
<td>24</td>
<td>F</td>
<td>Acute anuria with high blood pressure</td>
<td>Fever, pleuritis, arthralgia</td>
<td>Proteinuria</td>
<td>39-0</td>
<td>937</td>
<td>—</td>
<td>+</td>
<td>1040</td>
<td>—</td>
</tr>
<tr>
<td>6 (3)*</td>
<td>72</td>
<td>M</td>
<td>Acute renal failure superimposed on nephrotic syndrome to minimal change disease</td>
<td>Fever, pleuropericarditis, Coombs' positive haemolytic anaemia</td>
<td>Proteinuria of 6 g/day, 10 RBC, 10 WBC</td>
<td>—</td>
<td>513</td>
<td>7</td>
<td>1/2560</td>
<td>530</td>
<td>33 (low) The acute renal failure was due to interstitial lupus nephritis. Prednisone 100 mg daily and cyclophosphamide. Creatinine clearance increased to 30 ml/min. Patient died 1 month later from sepsis</td>
</tr>
<tr>
<td>7 (7)*</td>
<td>3</td>
<td>M</td>
<td>Mild proteinuria without deterioration of renal failure</td>
<td>Fever epistaxis, rash, Coombs' positive haemolytic anaemia</td>
<td>+ Protein, few granular casts</td>
<td>3-7</td>
<td>44</td>
<td>86</td>
<td>1/160</td>
<td>460</td>
<td>—</td>
</tr>
</tbody>
</table>

*No of reference.

FANA = fluorescent antinuclear antibody; C3 = third component of complement. CH₅₀ = 50% activity of total haemolytic complement; TBM = tubular basement membrane.
Table 3 Histopathological findings of predominant tubulointerstitial nephritis in seven patients with systemic lupus erythematosus

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Light microscopy</th>
<th>Immunofluorescence examination</th>
<th>Electron microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Three of 25 glomeruli were sclerotic. All others appeared normal. Severe interstitial fibrosis, tubular atrophy, thickening, and reduplication of TBM and interstitial mononuclear cell infiltration</td>
<td>Granular deposits of IgG, IgM, and C3 along the basement membranes of most of the proximal tubules. Some deposits in the interstitium as well. The glomeruli were stained only partially for C3 in the mesangium</td>
<td>Numerous interstitial lymphocytes and mast cells. Irregular dense deposits in some of the thickened TBM</td>
</tr>
<tr>
<td>2</td>
<td>Normal glomeruli. Focal patchy areas of interstitial fibrosis and tubular atrophy</td>
<td>Negative immunofluorescence studies of the glomeruli. Deposits of C3 were found on the tubular basement membrane</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Increase in the interstitial inflammation with mononuclear cell infiltration and tubular damage. Mild increase in mesangial cells, which had not changed from previous biopsy</td>
<td>Granular deposits of IgG and C3 in the mesangium, interstitium, along TBM, and Bowman’s capsule</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Mild and focal mesangial cell proliferation. Most of the tubular cells appear sclerotic. Diffuse oedematous fibrosis in the interstitium with mononuclear cell infiltration</td>
<td>Diffuse granular deposits of IgG and Clq along the TBM. Small mesangial deposits of IgG, Clq, and C3</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Ischaemic changes with shrinkage of the tufts in almost all of the glomeruli. Mild segmental mesangial cell proliferation. Diffuse interstitial fibrosis with mononuclear cell infiltration</td>
<td>Diffuse granular deposits of IgG, Clq, and to a lesser degree of C3 and IgM along the TBM. No deposits on the glomeruli. Immune deposition vessels</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Focal chronic interstitial inflammation and fibrosis. Minimal glomerular cellular abnormalities</td>
<td>Interstitial deposits of IgG, IgM, and C3</td>
<td>Fusion of glomerular basement membrane foot processes</td>
</tr>
<tr>
<td>7</td>
<td>Mild increase in mesangial cells and matrix, Oedema, fibrosis, and monocytic infiltration of the interstitium. Atrophic tubules with thickened and tortuous TBM</td>
<td>Granular staining in the mesangium of glomeruli for IgG, C3, Clq, and fibrin. Diffuse +3 linear staining for IgG along the TBM and Bowman’s capsule</td>
<td>Increase in mesangial cells. Electron dense deposits in the mesangium. The glomerular and TBM appear normal</td>
</tr>
</tbody>
</table>

TBM = tubular basement membrane.
drugs (e.g., non-steroidal anti-inflammatory agents). The finding of a sclerotic glomerulus in the renal biopsy specimen, however, indicated previous renal damage, and although acute interstitial nephritis related to the viral infection with which she presented cannot be excluded, it seems unlikely. Furthermore, the mononuclear cell interstitial infiltration and the positive immunofluorescent findings along the tubular basement membrane and Bowman’s capsule are in accordance with interstitial lupus nephritis. IgG was not found together with C3 along the tubular basement membrane in our case, but deposits of C3 alone have been demonstrated in kidney biopsy specimens of lupus nephritis with tubulointerstitial involvement. Moreover, the association of renal tubular acidosis with lupus nephritis, as in our patient, is a frequent finding, which suggests lupus renal involvement in our case. It is possible that the tubular damage was not caused by deposits of immune complexes, but rather by cell mediated injury. Although the mononuclear cell infiltrates have not been functionally characterised in SLE, morphologically similar cell populations in other types of interstitial nephritis have been identified as activated T cells. We therefore assume that this young woman had a rare manifestation of lupus renal disease—predominant interstitial nephritis.

Tubulointerstitial involvement is now a well known feature of lupus nephritis. Interstitial inflammation is found in 66% of lupus nephritis biopsy specimens. A higher degree of interstitial inflammation is associated with more severe renal insufficiency and with advanced forms of lupus nephritis, mainly diffuse proliferative glomerulonephritis. It is assumed that the tubulointerstitial damage is a sequel to the deposition of immune complexes. Extraglomerular immune deposits and electron dense deposits are present in more than half of the biopsy specimens of patients with systemic lupus erythematosus. IgG and C3 are most commonly present in the deposits and they are found along the basement membranes of peritubular capillaries, within the interstitium and along the tubular basement membrane. Clinically, the tubulointerstitial involvement may contribute to the development of renal failure and to tubular dysfunction, marked by impaired maximal concentrating ability, reduced fractional urinary excretion of β2 microglobulin, and a renal tubular acidifying defect.

Despite the frequency of interstitial involvement in lupus nephritis, only a few cases of isolated or predominant tubulointerstitial nephritis have been reported in patients with systemic lupus erythematosus. Tables 2 and 3 summarise the seven well recorded cases. Most of the patients with predominantly interstitial nephritis are distinguished by clinically active lupus, positive tests for antinuclear antibodies and DNA binding, benign urine analysis, and a predominant interstitial inflammation with only mild glomerular damage. The interstitial inflammation is associated with immune deposits along the tubular basement membrane. Bowman’s capsule, and within the interstitium. In one case, however, Makker reported a child who presented with autoantibody induced interstitial nephritis. The autoantibodies reacted with the tubular basement membrane of the proximal renal tubules and the Bowman’s capsules of the glomeruli.

Clinically, these patients had variable presentations, courses, and treatments. Acute renal failure occurred in five of the seven cases (Nos 1, 3–6 in Tables 2 and 3). High dose corticosteroids were administered in four patients, with improvement of their renal function. In contrast, in case No 5 diuresis resumed after three months of peritoneal dialysis without specific treatment. The long term course of the patients who partially improved after the corticosteroid therapy is not mentioned. The patient (No 2) reported by Disler et al presented with asymptomatic renal tubular acidosis as the sole manifestation of lupus nephritis and, in contrast with our case, did not have active lupus or impairment of renal function.

The patient we have presented here was distinguished by a chronic course of interstitial lupus nephritis, renal tubular acidosis, and chronic renal failure. Considering the limited information on this rare manifestation of lupus nephritis, we decided not to treat her with corticosteroids, and thus were able to follow the natural history of predominant tubulointerstitial lupus nephritis in this patient for more than three years. In spite of her active lupus, manifested by exacerbations of arthritis, rash, pleuritis, and fever, and by high dsDNA binding and low C3 and CH₅₀, her renal function has remained stable and may in fact be improving, and thus she presents a relatively benign course, being spared the complications of corticosteroids and immunosuppressive therapy. It is probably prudent to observe such cases and only in the event of renal function deterioration consider immunosuppressive therapy.
Chronic predominant interstitial nephritis in a patient with SLE

623

exercises of the Massachusetts General Hospital. Case 2-1976.

Chronic predominant interstitial nephritis in a patient with systemic lupus erythematosus: a follow up of three years and review of the literature.

H Gur, Y Kopolovic and D J Gross

doi: 10.1136/ard.46.8.617

Updated information and services can be found at:

http://ard.bmj.com/content/46/8/617

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:

http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:

http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:

http://group.bmj.com/subscribe/