Increased prevalence of late stage T cell activation antigen (VLA-1) in active juvenile chronic arthritis

NIELS ØDUM,1 NIELS MORLING,1 PER PLATZ,1 BO HOFMANN,1
LARS P RYDER,1 CARSTEN HEILMANN,2
FREDDY KARUP PEDERSEN,2 LARS PETER NIELSEN,1
JOHANNES FRIIS,3 AND ARNE SVEJGAARD1

From the 1Tissue Typing Laboratory of the Department of Clinical Immunology; the 2University Clinic of Paediatrics, Department G, State University Hospital (Rigshospitalet), Copenhagen; and the 3Department of Physical Medicine and Rehabilitation (Hornbæk)

SUMMARY The presence of activated T cells as judged from the reaction with monoclonal antibodies (MoAb) against (a) a late stage T cell activation antigen (VLA-1), (b) the interleukin 2 (IL2) receptor (CD25), and (c) four different HLA class II molecules (HLA-DR, DRw52, DQ, and DP) was studied in 15 patients with active juvenile chronic arthritis (JCA), 10 patients with JCA in remission, and 11 age matched, healthy controls. In addition, the distribution of T 'helper/inducer' (CD4+), T ‘suppressor/inducer’ (CD4+,Leu8+), T ‘suppressor/cytotoxic' (CD8+), and ‘natural killer’ (NK) cells (CD16+) was studied. Twenty patients and six controls were investigated for the capability to stimulate alloreactivated primed lymphocytes. The prevalence of VLA-1 positive, large cells was significantly increased to 5% (median value) in active JCA as compared with JCA in remission (2%, p<0.05) and controls (1%, p<0.05), whereas no significant difference between JCA in remission and controls was observed. Except for two patients with active JCA, less than 1% IL2 receptor bearing cells were found in patients with JCA and controls. No significant difference in the prevalence and expression of the various HLA class II antigens was observed between the groups. Similarly, no significant differences in stimulatory capability in secondary mixed lymphocyte culture (MLC) were seen. The distribution of T helper/inducer (CD4+), T suppressor/cytotoxic (CD8+), and NK cells was similar in active JCA, JCA in remission, and controls. The prevalence of T suppressor/inducer (CD4+,Leu8+) cells was higher in remission JCA (17%) than in active JCA (11%) and controls (10%). This increase, however, did not reach statistical significance. In conclusion, late stage but not early stage T cell activation antigens were increased in patients with active JCA as compared with patients with JCA in remission and controls, whereas some patients in remission had an increased prevalence of T suppressor/inducer cells.

Key words: HLA-DR, HLA-DQ, HLA-DP, T suppressor/inducer cells, secondary mixed lymphocyte reaction.

Only a small percentage of freshly isolated normal peripheral blood T lymphocytes are activated as judged by the expression of early T cell activation markers such as the IL2 receptor (CD25),1,2 transferrin receptor,3 HLA class II antigens (e.g., HLA-DR),4,5 and the recently described late stage T cell activation antigen (VLA-1).6,8

Accepted for publication 18 May 1987.
Correspondence to Dr Niels Ødum, Tissue Typing Laboratory, Div. 7631, University Hospital (Rigshospitalet), Tagensvej 20, DK 2200 Copenhagen, Denmark.

In active multiple sclerosis enhanced expression of a T cell activation antigen, Ta1, but not of other T cell activation antigens, such as the IL2 receptor, has been reported.9 In synovial fluid obtained from adults with rheumatoid arthritis raised levels of VLA-1 but not of CD25 positive T cells were observed, whereas VLA-1 positive cells were only detectable in peripheral blood in some patients.10 In juvenile chronic arthritis (JCA) high percentages of HLA-DR positive T cells in synovial fluid, but normal levels in peripheral blood, have been described.11
The present study was undertaken to investigate the possible presence in the blood of cells expressing early or late stage T cells activation antigens, or both, in patients with active JCA as compared with JCA in remission and controls. In addition, the distributions of HLA-DR, DRw52, DQ, and DP positive cells and of T helper/inducer, T suppressor/cytotoxic, T suppressor/inducer, and NK cells in JCA and controls were studied.

Patients and methods

Patients and controls

The study comprised 25 patients classified as having (a) pauciarticular (10 patients), (b) polyarticular (11), or (c) systemic (four patients) JCA according to the EULAR WHO criteria. The patients were randomly selected from patients attending the department of paediatrics, Rigshospitalet. All were white Caucasoids of Danish extraction. Nineteen (76%) were female and six (24%) male with a mean age of onset of disease of 8.1 years (range 3–15 years). Disease activity (active synovitis) was defined as the presence of at least two of the following symptoms: (a) joint pain, (b) joint swelling (due to synovial swelling or effusion), and (c) restriction of joint movement. Remission was defined as absence of signs of active synovitis and a normal erythrocyte sedimentation rate, i.e., below 10 mm/min. According to these criteria, 15 patients (60%) were classified as having active disease at the time of investigation, while ten (40%) were in a state of remission. Controls comprised 11 healthy children matched ethnically and by age.

Isolation of peripheral blood mononuclear cells (PBMC)

PBMC suspensions were prepared by density gradient centrifugation, washed, and frozen as described elsewhere.

Monoclonal antibodies (MoAbs)

Table 1 shows the specificity, immunoglobulin subclass, trade name, and references for the commercially available MoAbs used. The anti-VLA-1 MoAb (Coulter clone) recognises a surface antigen expressed on T cells after two to three weeks of activation. MoAbs detecting early T cell activation markers included one against the IL2 receptor (CD25) and the various MoAbs directed against HLA class II antigens (HLA-DR, DRw52, DQ, and DP; Table 1). Additionally, MoAbs detecting the CD3 (Leu4, pan-T), the CD4 (Leu3, T helper/inducer subset), and the CD8 (Leu2, T suppressor/cytotoxic subset) T cell surface molecules were used (Table 1). Double fluorescence experiments were performed with the anti-CD4 (Leu3, phycoerythrin conjugated) and the anti-Leu8 MoAb (fluorescein isothiocyanate conjugated) (Table 1).

<table>
<thead>
<tr>
<th>MoAb</th>
<th>Trade name</th>
<th>Molecular specificity</th>
<th>Immunoglobulin subclass</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1A5</td>
<td>ACT-T-SET VLA-1 (T Cell Sciences)</td>
<td>Late stage T cell activation antigen (VLA-1)</td>
<td>IgG1</td>
<td>6-8</td>
</tr>
<tr>
<td>Anti-IL2 receptor</td>
<td>Anti-IL2 receptor (Becton-Dickinson)</td>
<td>The CD25 (IL2 receptor) complex</td>
<td>IgG1</td>
<td>1, 2</td>
</tr>
<tr>
<td>Anti-HLA-DR</td>
<td>Anti-HLA-DR (Becton-Dickinson)</td>
<td>Monomorphic HLA-DR</td>
<td>IgG2a</td>
<td>16</td>
</tr>
<tr>
<td>Anti-HLA-DQ</td>
<td>Leu10</td>
<td>HLA-DQw1, w3, blank and some w2 positive PBMC*</td>
<td>IgG1</td>
<td>14</td>
</tr>
<tr>
<td>Tü-39</td>
<td>Clonab DP-DR (Biotest)</td>
<td>Broad HLA class II, preferentially reacting with DP</td>
<td>IgG2a</td>
<td>14-16, 27</td>
</tr>
<tr>
<td>HLA-DRw52</td>
<td>HLA-DRw52 (Synbiomonomes)</td>
<td>A polymorphic determinant on HLA-DR which is associated with DR3, DR5, and DRw6</td>
<td>IgG2b</td>
<td>17, 18</td>
</tr>
<tr>
<td>T suppressor/cytotoxic</td>
<td>Anti-Leu2a (Becton-Dickinson)</td>
<td>The CD8 complex</td>
<td>IgG1</td>
<td>19, 20</td>
</tr>
<tr>
<td>T helper/inducer</td>
<td>Anti-Leu3a (Becton-Dickinson)</td>
<td>The CD4 complex</td>
<td>IgG1</td>
<td>19, 20</td>
</tr>
<tr>
<td>T suppressor/inducer</td>
<td>Anti-Leu8 (Becton-Dickinson)</td>
<td>Undetermined; reacts with a subpopulation of CD4+ lymphocytes</td>
<td>IgG2a</td>
<td>21, 22, 34</td>
</tr>
<tr>
<td>NK cells</td>
<td>Anti-Leu11 (Becton-Dickinson)</td>
<td>The CD16 complex</td>
<td>IgG1</td>
<td>22, 23</td>
</tr>
</tbody>
</table>

*PBMC = peripheral blood mononuclear cells.
CELL SURFACE ANTIGEN ANALYSIS

Cells were analysed by indirect immunofluorescence (fluorescence activated cell sorter (FACS) analyser, Becton-Dickinson) as described previously\(^2\) using specific MoAbs (see above) and a second fluorescein conjugated goat antimouse immunoglobulin (Nei 504, New England Nuclear) or fluorescein conjugated avidin (Vector) in the case of a biotin conjugated MoAb. The percentage of positive cells from FACS analysis was calculated as the percentage of specifically stained cells minus the percentage obtained with a control MoAb using a fixed cut off value. The cut off value was fixed to the right of background staining giving values of control staining.

Fig. 1 Fractions (%) of large and small cells positive for VLA-1 and CD25 (IL2 receptor) antigens in patients with active JCA (●), with JCA in remission (○), and in healthy controls (△). The prevalence of VLA-1 positive, large cells was significantly higher in patients with active disease than in patients in remission (p<0·05) or in controls (p<0·05). No other differences between the groups reached statistical significance.
of less than 4%. The channel numbers corresponding to median fluorescence intensity were determined as the median fluorescence intensity (MFI) of the positive cells on an arbitrary scale from 1 to 256. The percentages and MFI values were analysed on large and small cells, separately. In all individuals it was possible to make the distinction between large and small cells from the volume signals from the FACS analysis, which clearly showed a dichotomy of the cell populations.

Stimulation of alloactivated primed lymphocytes in secondary mixed lymphocyte culture (MLC)

PBMC from patients with JCA and controls were used as stimulator source in secondary MLC experiments using HLA-DP and DR reactive primed lymphocytes as described in detail elsewhere.13

Statistics
The Wilcoxon rank sum test for paired differences and the Mann-Whitney U test were used. A value of \(p<0.05 \) was considered significant. In the case of no a priori expectations the \(p \) values were corrected for (multiplied by) the number of comparisons and further multiplied by two in order to obtain a double sided test. For example, when comparing the distribution (prevalence and fluorescence intensity) of the four HLA class II antigens in active JCA, JCA in remission, and controls the \(p \) values were multiplied by \(2^4 \times 3 \times 2 \times 2 = 192 \).

Results

VLA-1 and CD25 expression in JCA and controls

Fig. 1 shows the percentage of large (a and b) and small cells (c and d) expressing the VLA-1 and the CD25 antigen in JCA patients with active synovitis and JCA in remission as well as in age matched controls. In 10 of 15 patients with active disease more than 3% of the large cells were VLA-1 positive (Fig. 1a), whereas only three of 10 patients in remission had more than 3% VLA-1 positive cells (Fig. 1a). In contrast, none of the healthy children expressed more than 3% VLA-1 positive cells. In two patients with active JCA 15% or more VLA-1 positive large cells were found. The prevalence of VLA-1 positive large cells was significantly increased in active JCA as compared with JCA in remission (\(p<0.05 \)) and with controls (\(p<0.05 \)), whereas no significant difference between JCA in remission and controls was observed. Similar results, although less pronounced, were obtained when VLA-1 on small cells were analysed (Fig. 1c).
In contrast with VLA-1, no patients or controls had more than 4% CD25 positive large or small cells (Figs 1b and d). Indeed, with the exception of two patients with active JCA, CD25 positive cells were detectable in neither JCA nor controls (Figs 1b and d). There was no significant difference in the distribution of large and small cells between the groups, and no correlation between the percentage of VLA-1 positive cells and any clinical subgroup of JCA was observed (data not shown).

HLA Class II Antigens in Healthy Children

Table 2 shows the median values of the percentage of positive cells and the median fluorescence intensity (MFI) on large and small cells obtained from 11 healthy children when investigated with MoAbs directed against HLA-DR, DRw52, DQ, and DP.

The percentages of HLA-DP (64%) and DR (58%) positive large cells were significantly higher (p<0.01) than those of HLA-DRw52 (49%) and DQ (25%) positive cells (Table 2). In contrast, when the results for small cells were compared no differences between the percentages of HLA-DP (11%), DR (13%), DRw52 (14%), and DQ (11%) were observed.

HLA Class II Antigens in JCA

As shown in Table 2, in patients with JCA the percentages of HLA-DP positive, large cells (74% in active JCA and 73% in remission JCA) were not significantly higher than those of DR positive large cells (58% and 57% respectively); uncorrected p value <0.01, but not significant when corrected. The fractions of HLA-DP positive large cells (74% in active JCA and 73% in remission JCA) and DR positive large cells (58% and 57%) were significantly higher than those of HLA-DRw52 (53% and 50%, p<0.05) and DQ (25% and 26%, p<0.01) respectively.

Discussion

In this study we demonstrated an increased pre-
valence of cells reactive with a MoAb detecting a late stage T cell activation antigen (VLA-1) in patients with active JCA as compared with JCA in remission and controls. In contrast, early activation markers such as IL2 receptor and HLA class II antigens were not increased. It may be speculated that the reaction of the VLA-1 (IgG1) MoAb with large cells in active JCA could be due to non-specific, Fc mediated binding to monocytes, activated T cells, or other cells bearing Fc receptors. Although this possibility cannot be ruled out, it seems unlikely, as no non-specific binding was observed with other MoAbs of the same immunoglobulin isotype, e.g., the anti-IL2 receptor MoAb. To our knowledge the present data yield the first evidence of an increased prevalence of cells expressing a late stage T cell activation antigen (VLA-1) in patients with active JCA. In eight adults with rheumatoid arthritis raised levels of VLA-1 but not CD25 positive T cells were observed in synovial fluid, whereas levels in peripheral blood of VLA-1 positive cells above control values were only seen in some patients.

High percentages of HLA-DR positive T cells in synovial fluid have been demonstrated in JCA, whereas no increased prevalence of HLA-DR positive T cells was observed in peripheral blood. Similarly, no differences in MFI or the prevalence of HLA-DR, DRw52, or DQ positive cells between the groups could be shown in the present study. In contrast, the prevalence of HLA-DR positive cells was significantly increased in JCA as compared with controls. No significant difference in the stimulatory capability was observed between JCA and controls when tested in secondary MLC with HLA-DR reactive primed lymphocytes.

Conflicting data on the distribution of T helper/inducer (CD4+) and T suppressor/cytotoxic (CD8+) subpopulations in JCA have been reported. No significant difference in the prevalence of CD4+ and CD8+ lymphocytes could be shown in the present study. The prevalence of the T suppressor/inducer subpopulation, however, defined as CD4+.Leu8+ cells, was insignificantly increased in JCA in remission as compared with patients with active disease. In healthy individuals the T suppressor/inducer subpopulation was originally identified as the subpopulation of CD4+ T cells that reacted with autoantibodies found in sera of patients with JCA. Recently, the T suppressor/inducer subset has also been defined as CD4+ T cells reactive with various monoclonal antibodies (Leu8, TQ1, and RH). In contrast with our findings in JCA, very low levels of T suppressor/inducer cells (<2%) were observed in infants with autoimmune neutropenia or haemolytic anaemia as compared with age matched, healthy controls (6% v 25%), whereas the number of CD8+ cells in the patients was normal.

In conclusion, the analysis of peripheral blood mononuclear cells may be of importance in the evaluation of the disease activity and the underlying immunopathological mechanism in JCA as VLA-1 positive cells appear in vitro after long term stimulation. It may be speculated that VLA-1 positive cells in JCA represent lymphocytes chronically stimulated by ectoantigen or autoantigen. Functional in vitro studies such as lymphokine production and cytotoxicity may elucidate an immunopathogenic importance of VLA-1 positive cells in JCA.

This work was supported in part by the Danish Rheumatism Association, the Danish Cancer Society, and the Danish Medical Research Council. Bo Hofmann is funded by the Danish Cancer Society (Kraeftens Bekæmpelse). We are grateful to Birgitte Kjaersgaard for excellent secretarial assistance and A M Borre Carlsen for the illustrations.

References

Increased prevalence of late stage T cell activation antigen (VLA-1) in active juvenile chronic arthritis.

N Odum, N Morling, P Platz, B Hofmann, L P Ryder, C Heilmann, F K Pedersen, L P Nielsen, J Friis and A Svejgaard

Ann Rheum Dis 1987 46: 846-852
doi: 10.1136/ard.46.11.846

Updated information and services can be found at:
http://ard.bmj.com/content/46/11/846

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/