Alkylating cytostatic treatment in renal amyloidosis secondary to rheumatic disease

K BERGLUND,1 C KELLER,1 AND H THYSSE2
From the Departments of 1Rheumatology and 2Nephrology, University Hospital, Lund, Sweden

SUMMARY Fourteen consecutive patients with chronic inflammatory rheumatic disease and reactive renal amyloidosis were treated with alkylating cytostatics in 22 separate periods varying in duration between six and 30 months. Chlorambucil alone was given in 14 treatment periods, cyclophosphamide alone in six, and both alternately in two. The dosage was adjusted to attain a major suppression of the rheumatic inflammation and a blood lymphocyte level below 1-0×109/l. Renal function improved in 12 treatment periods, renal deterioration was arrested in three periods, and in another four periods the rate of functional decline slowed down. In the remaining three treatment periods, associated with further deterioration in renal function, treatment was inadequate owing to blood dyscrasia and failure to control hypertension. Glomerular filtration rate (GFR) was followed more closely in 10 treatment periods, in all of which the falling trend was arrested or reduced. The survival rate at five years was 93%. Three patients who dropped out of the treatment programme are so far the only ones not still alive. Nine are still being followed up after 6–17 years, and the other two remaining live patients have had renal transplants for five years.

Key words: chlorambucil, cyclophosphamide.

As stated in recent reviews there is still no generally acknowledged treatment for preventing progression of renal reactive amyloidosis, also known as the secondary or AA form.1–3 It often occurs as a result of rheumatic inflammatory disease. When dialysis or transplantation are not applicable, death after a median time of five years has been reported.4 5

Arrest, or even regression, of amyloid deposition has been shown to occur when the underlying inflammatory disease has been eliminated or improved.6 Cytostatic agents appear to have the capacity to suppress rheumatic inflammatory processes and thereby the production of the circulating precursor of the AA protein, the acute phase reactant serum amyloid A (SAA) protein. The alkylating cytostatic drugs, cyclophosphamide (Cy) and chlorambucil (Ch), are probably the most powerful in this respect. Ch has been used in juvenile chronic arthritis (JCA) with renal amyloidosis in England, Poland, and West Germany, but the outcome has been recorded in only one report,7 in which results were reported to be promising. In another study with follow up biopsy, regression of renal amyloidosis was found after treatment with Cy.8

In the present study 14 patients with rheumatic disease and reactive renal amyloidosis were treated with Cy or Ch, or both, in a total of 22 separate treatment periods. The results suggest an ameliorating effect on the course of the renal process. Experience from several other cases with shorter observation periods appears to corroborate this finding.

Patients and methods

Fourteen consecutive patients with rheumatic disease and renal amyloidosis (Table 1) were treated with Ch or Cy, or both (Table 2). Nine had rheumatoid arthritis, one had JCA, and four had ankylosing spondylitis. The amyloidosis was verified by biopsies (Table 1).

All patients had proteinuria with or without nephrotic syndrome (Table 1), and all but two showed substantially decreased kidney function (Table 2).

Serum creatinine and endogenous creatinine clearance were determined by routine methods, and in most instances the GFR was assessed as 51Cr-

Accepted for publication 25 March 1987.
Correspondence to Dr K Berglund, Department of Rheumatology, University Hospital, S-221 85 Lund, Sweden.

757
EDTA clearance.9 Proteinuria was assessed either as g/l or, in most instances, as the albumin clearance expressed as per mille of the creatinine clearance, i.e., $10^3\times\text{C-alb}:\text{C-creat}$ (reference value <0.01). A change of more than 15\% was considered significant for GFR or S-creatinine, or both, and of more than 30\% for C-alb:C-creat. Available GFR values in seven patients permitted estimation of the average change of function in periods before, during, and after treatment (Fig. 1).

The cytostatic treatment was given for six months or more in a total of 22 separate periods. In the beginning of the 1970s Cy was our first choice, but later Ch was preferred as it is often better tolerated and does not entail hazards to the bladder. In two periods treatment was started with Cy but later switched to Ch. Dosage was adjusted to obtain a peripheral lymphocyte level of less than 1.0×10^9/l, which in our experience is usually necessary to ensure a substantial reduction of the systemic inflammatory activity.

A 'synovitis index', shown to correlate with laboratory indices of inflammatory activity,10 was calculated by giving one point for slight swelling and two points for marked swelling (recorded by a rheumatologist, KB or CK), and adding the scores from the following joints: proximal interphalangeal (10 joints), metacarpophalangeal (10 joints), wrist, elbow, knee, ankle, and metatarsophalangeal (counted as one joint for each foot). Since 1980, C reactive protein in serum (CRP) has been assessed as an additional estimate of inflammatory activity (12 periods).

Confidence limits for frequency values were taken from binomial distribution tables. The significance of change from one period to another (Fig. 1) was calculated with Wilcoxon's signed rank test.

Results

In the 22 periods of treatment with alkylating agents the duration exceeded six months in 18 and 12 months in seven (median duration 12). Reduction of lymphocyte levels to near 1×10^9/l or below was attained in all but two periods (patient No 2, period 1; and patient No 14). When the synovitis index was 2 or more at the start of treatment (16 periods, 2–31 points, median 12) there was always a reduction (Table 2) at the end of the medication period (0–6 points, median 1). Adequate data were not available in two periods. CRP diminished in 9/12 periods.

In 12 treatment periods renal function improved (I, Table 2). Proteinuria diminished or disappeared in all. Oedema decreased in seven periods, while GFR was stable in 10 and improved in two. A substantial rise of GFR occurred only in period 1 of patient No 6 (Table 2), which may be explained by withdrawal of phenylbutazone or possibly by elimination of renal oedema. CRP was followed in five periods of improvement and found to decrease markedly in all five.

During three periods there was no significant change either in proteinuria or GFR (S, Table 2). In another four periods, the GFR decreased or S-creatinine increased, or both, significantly, but at a slower rate than before administration of the

Table 1

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Sex</th>
<th>Rheumatic diagnosis</th>
<th>Age at onset</th>
<th>Amyloidosis diagnosed after years</th>
<th>Amyloidosis in biopsy</th>
<th>Clinical picture at amyloidosis diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>RA</td>
<td>19</td>
<td>13</td>
<td>Kidney NP</td>
<td>NS</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>AS</td>
<td>23</td>
<td>12</td>
<td>Skin</td>
<td>NS</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>AS</td>
<td>18</td>
<td>11</td>
<td>Kidney NP</td>
<td>NS</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>RA</td>
<td>34</td>
<td>28</td>
<td>Rectum</td>
<td>Proteinuria, haematuria, glomerulonephritis, hypertension</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>RA</td>
<td>52</td>
<td>7</td>
<td>Rectum</td>
<td>Proteinuria, haematuria, glomerulonephritis, hypertension</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>AS</td>
<td>20</td>
<td>8</td>
<td>Kidney IgG, M, A, C3</td>
<td>NS</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>RA</td>
<td>29</td>
<td>20</td>
<td>Kidney IgG, M, A, C3</td>
<td>NS</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>AS</td>
<td>15</td>
<td>13</td>
<td>Kidney No glomeruli</td>
<td>NS</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>RA</td>
<td>35</td>
<td>10</td>
<td>Kidney No glomeruli</td>
<td>NS</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>RA</td>
<td>18</td>
<td>19</td>
<td>Kidney No glomeruli</td>
<td>NS</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>RA</td>
<td>37</td>
<td>20</td>
<td>Kidney IgG, M, C1q, C3</td>
<td>NS</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>RA</td>
<td>38</td>
<td>19</td>
<td>Kidney No glomeruli</td>
<td>Proteinuria, hypertension</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>JCA</td>
<td>10</td>
<td>22</td>
<td>Kidney IgG, M</td>
<td>Proteinuria</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>RA</td>
<td>38</td>
<td>19</td>
<td>Kidney IgG, M</td>
<td>NS</td>
</tr>
</tbody>
</table>

AS=ankylosing spondylitis; RA=rheumatoid arthritis; JCA=juvenile chronic arthritis; NP=not performed; NS=nephrotic syndrome.
<table>
<thead>
<tr>
<th>Patient No</th>
<th>Cytostatic therapy</th>
<th>Diuretic therapy F (mg/day)</th>
<th>Values at start and at end of the cytostatic treatment period</th>
<th>Renal process</th>
<th>Survival (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drug</td>
<td>Period (months)</td>
<td>Oedema (0 to +++)</td>
<td>S-albumin (g/l)</td>
<td>10^4×C-alb:</td>
</tr>
<tr>
<td>1</td>
<td>Cy</td>
<td>16</td>
<td>++</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Cy</td>
<td>6</td>
<td>0</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Cy</td>
<td>8</td>
<td>0</td>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Cy</td>
<td>16</td>
<td>++</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Cy</td>
<td>6</td>
<td>++</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Cy-Ch</td>
<td>19</td>
<td>++</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Cy-Ch</td>
<td>13</td>
<td>0.0</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Cy-Ch</td>
<td>7</td>
<td>0</td>
<td>34</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>Cy-Ch</td>
<td>6</td>
<td>160</td>
<td>++</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Cy-Ch</td>
<td>12</td>
<td>80-80</td>
<td>++</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>Cy-Ch</td>
<td>11</td>
<td>40</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>Cy-Ch</td>
<td>12</td>
<td>80</td>
<td>++</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>Cy-Ch</td>
<td>12</td>
<td>80</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>Cy-Ch</td>
<td>9</td>
<td>40</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

Cy=cyclophosphamide, Ch=chlordemecit, F=furosemide (daily dosage at highest level and at end of observation). Course of renal process: I=improvement, S=stable, P=progress of impairment, P(RF)=progressive but at reduced rate of functional deterioration; C-alb: C-creat=ratio of albumin and creatinine clearance. *dead; +transplanted, alive; $\text{estimated as g/l at stable GFR;}$ ||hypertension.
cytostatic drug (P(RF), Table 2); three of these four periods are included in Fig. 1. There was no regular pattern of change in CRP in periods classified as S or P(RF).

In the remaining three periods the rate of deterioration of renal function did not change (P, Table 2). In all of these, treatment was inadequate in some respect. In period 1, patient No 5, there was a moderate hypertension that was insufficiently controlled. In patient No 8, immunosuppression was not attained because of granulocytopenia (up to 14 mg Ch/day). In the third period (patient No 9), hypertension could not be controlled and there was rapid progression to uraemia. Renal angiography showed partial stenosis of the right renal artery.

In the seven cases where 51CrEDTA clearance was determined more frequently (Fig. 1) the GFR increased during three periods of treatment and showed a reduction of decline rate in all of the other seven treatment periods. The median rose from −2-6 to −0-2 ml/min/1·73 m²/month (p=0·008 for n=7).

Increase of GFR was never observed when non-steroidal anti-inflammatory drug (NSAID) medication was discontinued, with the possible exception of period 1 of patient No 6 (see above). A significant and persistent fall in GFR followed major surgery in two cases. Hypertension probably contributed to a fall in GFR in three patients, in one of whom (No 10, Table 2) GFR became stable when blood pressure was normalised by heavy antihypertensive treatment.

Only one patient, who died of uraemia after 4·5 years, survived less than five years from the detection of amyloidosis (Table 2)—a five year survival rate of 93%. A further two patients died of uraemia, one after 5·3 years and the other after 11 years. Two patients (Nos 8 and 9), accounted for survivals of seven and six years respectively, when they received renal transplants, are still alive five years after the operation. Also still alive are nine patients, two of whom have had a total remission of their rheumatic and renal affection for several years. The three patients who died of uraemia had all dropped out of

Fig. 1 Average monthly change in 51CrEDTA clearance before (□), during (■), and after (☑) treatment with cytostatic drugs in 10 periods (patients Nos 3, 6, 7, 10, 11, 13, and 14). The figures below the hatched rectangles (i.e., after treatment) indicate the number of months for which the average change of GFR is calculated. For patient No 13 the period of treatment (Table 2) was 28 months: during the first 12 months the reduction in GFR was 2·7 ml/min/1·73 m²/month; during the following 16 months the dose of Ch was raised, arthritis and lymphocyte level were more adequately controlled, and the monthly fall in GFR was 0·5 ml/min/1·73 m². The treatment was then switched to azathioprine (no 'after Ch' value was calculated).
the treatment programme and lost contact with the
department some time before they entered end
stage of their renal disease (Table 2). Median
survival time is now seven years (range 4·5–17).
None of the patients has so far shown any
potentially fatal side effects of the treatment with
alkylating agents. Herpes zoster occurred in 4/22
periods, necessitating the interruption of therapy
for a couple of months.

Discussion

In the 14 patients followed up the five year survival
rate was 93%, significantly more than the 50% (p<0·01) which is characteristic for the natural
course of renal amyloidosis secondary to rheumatic
disease.4 5 The mean survival time is now nine years,
a figure that will rise as two patients are in full
remission with regard to arthritis and renal affection,
and seven patients (i.e., excluding two living with
renal transplants) have not yet reached the end
stage of renal disease. The three patients who died
of ureaemia might have lived longer had they
continued with the treatment programme.

The unexpectedly favourable trend in survival
statistics is corroborated by analysis of the laboratory data (Table 2, Fig. 1). In 15 of the 22 periods of
cytostatic therapy, renal function either improved
(12 periods) or was stable (three). In another four
periods the rate of functional deterioration was
slower than before cytostatic treatment. No
improvement was obtained in three periods, in all of
which there was some inadequacy of treatment. In
two of these three periods occurred the only
instances of patients (Nos 8 and 9) developing
uraemia within a few weeks, despite cytostatic
treatment to retard the rate of deterioration of renal
function. Specific study of GFR (51Cr-EDTA clearance) in 10 periods of treatment also indicated
inhibition of renal functional decline (Fig. 1).

As there was no control group it is not known
whether our seemingly favourable outcome figures
are significantly better than might have been
obtained in a comparable group receiving placebo.

How long should treatment continue? Based on
our clinical experience our present policy is as
follows: in nephrotic syndrome Ch/Cy is usually
discontinued when 10×× C-alb:C-creat has been
below 1·0 for six months. Where renal function has
deteriorated, Ch/Cy is given until the GFR and S-
creatinine have been stable for six to eight months.
Prolonged treatment should be avoided during
periods of inflammatory inactivity, to reduce the
risk of non-lymphocytic leukaemia.11 13

Of other possible precautions against impairment
of renal function, the importance of the following
should be stressed: radical treatment, such as the
administration of angiotensin converting enzyme
inhibitors14 in the event of any incipient hyperten-
sion; the avoidance of major surgery15 16 whenever
possible (studies on how to eliminate this source of
risk are under way (G Husby, personal communica-
tion)); and the avoidance of NSAIDs—with the
possible exception of sulindac.17 A detailed account
of the principles we have adopted for the manage-
ment of secondary renal amyloidosis is to be
published elsewhere.

In conclusion, results from these 14 cases of
rheumatic disease show that in most instances (19/22
treatment periods) the course of renal amyloidosis
was satisfactory or somewhat improved after treat-
ment with Ch or Cy (Ch being the drug of choice).
This is in contrast with the generally poor outcome
reported for adult rheumatic patients, and is en-
couraging enough to justify randomised placebo-
control studies of Ch treatment, in which emphasis
should be given to examining the effect on the
course of renal amyloidosis of suppressing SAA
congerations.18

References

1 Anonymous. Treatment of renal amyloidosis [Editorial].
Lancet 1980; i: 1062–3.
1980; 302: 1333–43.
3 Kisselevsky R. Amyloidosis: a familiar problem in the light of
current pathogenetic developments. Lab Invest 1983; 49:
381–90.
4 Wright J R, Calkins E. Clinical-pathologic differentiation
of common amyloid syndromes. Medicine (Baltimore) 1981;
5 Wegelius O, Wafin F, Falck H, Törnroth T. Follow-up study
of amyloidosis secondary to rheumatic disease. In: Glenner G G,
Costa P P, de Freitas F, eds. Amyloid and amyloidosis.
6 Dikman S H, Kahn T, Gribetz D, Churg J. Resolution of renal
7 Schnitzer T J, Ansell B M. Amyloidosis in juvenile chronic
8 Falck H M, Törnroth T, Skrifvars B, Wegelius O. Resolution of
renal amyloidosis secondary to rheumatoid arthritis. Acta Med
9 Brauner L, Westling H. On the necessity of strict bed rest
during determination of ·Cr-EDTA clearance. Clin Physiol
10 Berglund K, Laurell A-B, Nived O, Sjöholm A G, Sturfelt G.
Complement activation, circulating Clq binding substances and
inflammatory activity in rheumatoid arthritis. J Clin Lab
11 Castor C W, Bull F E. Review of United States data on
neoplasms in rheumatoid arthritis. Am J Med 1985; 78 (suppl
1A): 33–8.
12 Hazelman B. Incidence of neoplasms in patients with rheuma-
toid arthritis exposed to different treatment regimens. Am J
Med 1985; 78 (suppl 1A): 39–43.
13 Kinlen L J. Incidence of cancer in rheumatoid arthritis and
other disorders after immunosuppressive treatment. Am J Med
1985; 78 (suppl 1A): 44–9.
14 Taguma Y, Kitamoto Y, Futaki G et al. Effect of captopril on

Alkylating agents in renal amyloidosis 761
762 Berglund, Keller, Thysell

Alkylating cytostatic treatment in renal amyloidosis secondary to rheumatic disease.
K Berglund, C Keller and H Thysell

Ann Rheum Dis 1987 46: 757-762
doi: 10.1136/ard.46.10.757

Updated information and services can be found at:
http://ard.bmj.com/content/46/10/757

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/