Lack of correlation between in vitro and in vivo effects of low density lipoprotein on the inflammatory activity of monosodium urate crystals

T P GORDON,1 P CLIFTON,2 M J JAMES,3 AND P J ROBERTS-THOMSON1

From the Departments of 1Clinical Immunology, 2Biochemistry, and 3Surgery, Flinders Medical Centre, Bedford Park, South Australia

SUMMARY The effect of coating monosodium urate crystals (MSU) with low density lipoprotein (LDL), postulated previously as a major regulator of gouty inflammation, was studied in a neutrophil chemiluminescence (CL) assay and an air pouch model of inflammation induced by MSU. LDL crystalline coating abrogated the neutrophil CL response but, in contrast, had no inhibitory effect on leucocyte accumulation, levels of the prostaglandin (PG) metabolite 6-keto-PGF1α, and exudation of plasma proteins in the in vivo model. This latter observation raises doubts about the postulated physiological role of LDL in terminating the acute gouty attack.

Key words: gouty inflammation, apoprotein B-containing lipoproteins.

The interaction of monosodium urate crystals (MSU) with neutrophils is a critical feature in the pathogenesis of acute gout, but the factors modulating this interaction are still uncertain. One modulator likely to be important is crystalline protein coating. Serum and plasma coats markedly inhibit neutrophil oxidative and lytic responses to MSU4; this effect has been shown to be due to coating of crystals by lipoproteins containing apoprotein B (apo B). It has been proposed that ingress of lipoproteins into the joint space during urate crystal induced synovitis may be responsible for terminating the acute attack.6

To date there have been no reports on the effect of apo B lipoproteins on the biological activity of urate crystals in vivo. We have compared the effect of these lipoproteins in two models: MSU induced neutrophil chemiluminescence (CL), and urate crystal induced inflammation in the rat subcutaneous air pouch. Surprisingly, coating with low density lipoprotein (LDL), the apo B lipoprotein with the largest inhibitory effect, abrogated the oxidative response of human neutrophils to MSU in vitro, yet had no effect on the phlogistic activity of the crystals in vivo.

Materials and methods

LIPROPROTEIN DEPLETION AND ISOLATION Normal human serum (NHS) was brought to a density of 1.21 g/ml with solid KBr and spun at 40 000 rpm for 40 h at 4°C in a Beckman Ti50 rotor in a Beckman L5-65 ultracentrifuge. Centrifuge tubes were sliced in the middle of the clear section. The top fraction was then applied to the Superose 6B column for lipoprotein separation. The bottom fraction was retained as lipoprotein free serum (LPFS) and dialysed against Dulbecco's phosphate buffered saline (PBS) before use. Control NHS was spun as above, but the lipoprotein fraction was remixed with the LPFS after tube slicing and the serum then dialysed against PBS. Lipoproteins in the serum fraction of density <1.21 g/ml were subjected to gel filtration chromatography, which was performed at room temperature with Superose 6B and a K 16/70 chromatographic column (1.6×56 cm) in conjunction with the Pharmacia fast protein liquid chromatography system. The equilibrating and eluting solution contained 0.15 M NaCl, 0.01% Na2EDTA (sodium ethylenediaminetetra-acetate), and 0.02% NaN3. This solution was degassed and filtered through a 0.22 μm Millipore filter (Millipore Corp., Bedford, Mass, USA) before use. Fractions were eluted at a rate of 45 ml/h and the absorbance of eluate monitored continuously at 280 nm. Clear

Accepted for publication 16 January 1986.

Correspondence to Dr P J Roberts-Thomson, Department of Clinical Immunology, Flinders Medical Centre, Bedford Park, South Australia 5042.
separation of very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) was obtained with this system.

CRYSTALS
MSU crystals 2–20 μm in length were prepared by a modification of the method of Denko and Whitehouse. Crystals were coated with 50% control NHS diluted in Dulbecco’s phosphate buffered saline (PBS); 50% lipoprotein free serum (LPFS) diluted in PBS; 50% LPFS reconstituted with original serum concentrations of VLDL, LDL, or HDL; and purified LDL (1 mg/ml), in a ratio of 10 mg crystals per 1 ml of protein solution. Unbound protein was removed as described previously and crystals resuspended in urate saturated PBS. Control (uncoated) crystals were washed equally and suspended in urate saturated PBS.

CHEMILUMINESCEACE ASSAY
The CL response of human neutrophils to MSU was measured at 37°C in an LKB luminometer (model 1250) as previously described. Human peripheral neutrophils were isolated from heparinised blood by Hypaque-Ficoll separation followed by dextran sedimentation. Contaminating red cells were lysed during a five minute incubation in Gey’s solution. Results were expressed as the maximum chemiluminescence response (CL max), defined as the highest recorded light output (in millivolts) integrated over one second intervals.

RAT AIR POUCH FORMATION AND MSU INJECTION
The thoracic dorsal region of male hooded Wistar rats (200–300 g in weight) was injected subcutaneously with 20 ml sterile air and pouch formation maintained by reinflating with 10 ml air after three days. Pouches were deflated on day seven and injected with uncoated (control) and LDL coated urate crystal suspensions (20 mg in 5 ml urate saturated PBS). Groups of four rats were killed three hours and six hours after crystal injection and the pouches irrigated with 5 ml saline before withdrawing the fluid for estimation of prostaglandin (PG), protein, and cell number. Total leucocyte counts in the pouch washings were measured in a Coulter counter, and the prostaglandin 6-keto-PGF1α (the stable hydrolysis product of prostacyclin) measured by radioimmunoassay as described previously. Protein was measured according to the method of Pesce and Strande.

Results
IN VITRO STUDIES
Coating of MSU with NHS markedly depressed the chemiluminescence of crystal induced neutrophils compared with that of uncoated crystals (Table 1). The inhibitory effect was largely reversed by depletion of the lipoprotein fraction from serum (74% inhibition compared with 24% inhibition). Reconstitution of LPFS with VLDL and LDL, but not HDL, restored the inhibition (Table 1), confirming apo B lipoproteins as major regulators of the crystal-

Table 1 Effect on crystal induced CL of coating MSU with serum in the presence and absence of lipoprotein fractions

<table>
<thead>
<tr>
<th>Coating of MSU with:</th>
<th>CL max (mV)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS (uncoated)</td>
<td>201±4*</td>
<td>74</td>
</tr>
<tr>
<td>50% control NHS</td>
<td>52±3</td>
<td>74</td>
</tr>
<tr>
<td>50% LPFS</td>
<td>152±4</td>
<td>24</td>
</tr>
<tr>
<td>50% LPFS reconstituted with VLDL</td>
<td>91±7</td>
<td>55</td>
</tr>
<tr>
<td>50% LPFS reconstituted with LDL</td>
<td>53±4</td>
<td>74</td>
</tr>
<tr>
<td>50% LPFS reconstituted with HDL</td>
<td>149±6</td>
<td>26</td>
</tr>
<tr>
<td>LDL (1 mg/ml)</td>
<td>15±3</td>
<td>92</td>
</tr>
</tbody>
</table>

Coated and uncoated MSU (final concentration 1 mg/ml) were added to 2×105 neutrophils and 500 μl liposol in a final volume of 1·0 ml, and CL monitored at 37°C. LPFS was reconstituted with original serum concentrations of VLDL, LDL, and HDL. MSU=monosodium urate crystals; CL=chemiluminescence; NHS=normal human serum; LPFS=lipoprotein free human serum; VLDL=very low density lipoprotein; LDL=low density lipoprotein; HDL=high density lipoprotein.

*Data are expressed as the mean±SD of the maximum CL response (CL max) of three experiments.

Table 2 Comparison of the effects of uncoated and LDL coated MSU on crystal induced inflammation in the rat subcutaneous air pouch

<table>
<thead>
<tr>
<th>Crystal preparation</th>
<th>Three hours postinjection</th>
<th>Six hours postinjection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WCC×10^6</td>
<td>6-Keto-PGF1α (ng/ml)</td>
</tr>
<tr>
<td>Uncoated MSU (20 mg)</td>
<td>5·6±1·3</td>
<td>12·4±1·3*</td>
</tr>
<tr>
<td>LDL coated MSU (20 mg)</td>
<td>5·0±1·05</td>
<td>11·8±1·0</td>
</tr>
</tbody>
</table>

MSU=monosodium urate crystals; LDL=low density lipoprotein; WCC=white cell count; 6-keto-PGF1α=stable hydrolysis product of prostacyclin.

*Values represent the mean±SD of four rats.
neutrophil interaction in this in vitro system. Coating of MSU with a physiologic concentration of purified LDL (1 mg/ml) abrogated the neutrophil CL responses (92% inhibition compared with uncoated MSU).

IN VIVO STUDIES
Leucocyte accumulation (greater than 90% neutrophils), levels of the prostaglandin metabolite 6-keto-PGF1α, and protein concentrations in the washouts were no different after injection of uncoated and LDL coated urate crystal suspensions, at both three hours and six hours after crystal injection (Table 2). Injection of urate saturated PBS alone did not raise cell counts or prostanoid levels above unstimulated pouch levels.

Discussion
Regulation of the phlogistic activity of urate crystals by variable levels of apo B lipoproteins in joint fluid offers an attractive explanation for clinical observations such as the self limiting nature of the acute attack and striking variability in the inflammatory response to urate crystals. Recent work has shown that LDL abrogates a range of cellular responses to MSU, including phagocytosis by neutrophils, platelet serotonin release, and the physical association between crystals and platelets. The inhibitory properties of LDL are now known not to be specific for urate crystals and are seen with crystals of silica, calcium pyrophosphate dihydrate, and hydroxyapatite, and latex beads (R Terkeltaub, personal communication). Our results confirm apo B lipoproteins (VLDL, LDL) as major serum inhibitors of the urate crystal-neutrophil interaction, with LDL producing the largest inhibitory effect. Our findings differ slightly from those of Terkeltaub et al, who found that lipoprotein depletion completely reversed the inhibitory effect of a plasma coat on urate induced CL. Assay conditions such as the presence of non-specific protein, the use of plasma rather than serum, and performance of the CL assay at 22°C may account for this difference.

Since the interaction between urate crystals and cells has an essential role in the development of acute gouty arthritis it seemed appropriate to determine the effects of apo B lipoproteins on MSU induced inflammation in vivo. We used a rat air pouch model of facsimile synovium developed by Edwards et al to compare inflammatory responses induced by LDL coated and native MSU. Both pouch lining and synovium consisted of flattened fibroblast-like and macrophage-like cells. Urate crystals injected into the pouch cavity induced an acute inflammatory response characterised by phagocytosis of crystals by both types of lining cells, followed by cellular exudate formation with ingestion of crystals by neutrophils and mononuclear leucocytes. Although coating of MSU with LDL abrogated the activation of neutrophils in vitro (Table 1), LDL coated and uncoated crystals did not differ in their ability to stimulate cellular influx, synthesis of the prostanoid 6-keto-PGF1α, or exudation of plasma proteins in urate induced air pouch inflammation (Table 2). Thus LDL crystal coating did not appear to exert a protective or anti-inflammatory effect in this model.

This observation is difficult to reconcile given the striking inhibitory effect of apo B lipoproteins on cell surface interaction in vitro. It is possible that LDL coating does not effect the activation of mediator systems important for the development of tissue inflammation in the pouch. Alternatively, regions of the LDL coat critical for inhibition of crystal surface activity may be altered or masked in vivo. It would be interesting to study LDL effects in the neutrophil dependent canine and primate models of urate induced synovitis, which may be closer analogues of natural gouty inflammation. In addition, the effect of LDL on the release of other inflammatory mediators (e.g., lysosomal enzymes, lipooxygenase associated metabolites) deserves further study. The proposed role of apo B lipoproteins as modulators of crystal-cell interactions critical in the expression of gouty arthritis requires further verification by clinical and animal studies before such a mechanism can be fully accepted.

We gratefully thank Mrs M Brown for typing the manuscript and for helpful secretarial assistance. Dr T Gordon was the recipient of a National Health and Medical Research Council Postgraduate Scholarship.

References
Gordon, Clifton, James, Roberts-Thomson

Lack of correlation between in vitro and in vivo effects of low density lipoprotein on the inflammatory activity of monosodium urate crystals.

T P Gordon, P Clifton, M J James and P J Roberts-Thomson

Ann Rheum Dis 1986 45: 673-676
doi: 10.1136/ard.45.8.673

Updated information and services can be found at:

http://ard.bmj.com/content/45/8/673

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/