Correspondence

Amyloid arthropathy in patients with chronic renal failure

Sir, Doctor Freemont suggests that the articular amyloid deposits in haemodialysed patients could simply represent an epiphenomenon without clinical significance.¹ He compares these deposits with those noted in osteoarthritis, and indeed such occurrence has been recently re-emphasised.² We have had the opportunity, however, to observe several cases of histologically proved haemodialysis amyloid arthropathy,³ some of which have been published, including radiographs and histological data.⁴ It is apparent that in most patients on long term haemodialysis these amyloid deposits are identical both clinically and radiologically with amyloid arthropathies observed in multiple myeloma,⁵ for example, articular bone erosions and bone fractures at the level of capsular attachments may appear in the course of the disease. The pain and stiffness of the affected joints, mostly the wrists, shoulders, and hips, are often severe and become progressively worse. Digital flexor tendon sheaths may become swollen and painful causing inability to extend the fingers, and a severe carpal tunnel syndrome may ensue. Moreover, we observed two cases of erosions on the posterior aspect of the spine in the vicinity of the facet joints (Fig. 1). All these data argue against the suggestion that the haemodialysis amyloid articular deposits are a simple epiphenomenon. Furthermore, severe systemic amyloidosis has been described in long term haemodialysed patients, suggesting that it may evolve into a severe and fatal disease in these patients.⁴

Rheumatology Unit. J P HUAUX
Department of Medicine. C NAGANT DE DEUXCHAIENCES
St-Luc University Hospital.
Louvain University in Brussels.
B-1200 Brussels.
Belgium

References
7 Kavanaugh J H. Multiple myeloma, amyloid arthropathy, and

Fig. 1 Lateral view of the cervical spine in a patient on haemodialysis for a 16 year period. He suffered from a severe arthropathy of shoulders, wrists, and hips with femoral neck fractures. There is a large defect (arrows) of the posterior aspect of the spine at the level C1-2 related to amyloidosis.

Sir, Further to Dr Huaux’s letter I would like to make it clear that I do not challenge in any way the observations made by his and other groups, nor do I reject the concept of amyloid induced bone and joint disease in patients receiving chronic haemodialysis. My criticism is of the interpretation of the results. The discovery of amyloid in symptomatic joints of patients undergoing haemodialysis is not of itself evidence that it is responsible for the symptoms. Only after adequate control studies have failed to show the presence of amyloid in asymptomatic but is otherwise adequately matched patients should a possible pathogenetic link between amyloid and the connective tissue disorders associated with haemodialysis be postulated. It is perhaps worth summarising the evidence for ‘amyloid arthropathy’ and discussing its potential significance.

There is a syndrome manifested most frequently by joint pain or carpal tunnel syndrome, or both, which is a significant cause of morbidity in patients undergoing long term haemodialysis. It affects as many as 30% of patients on dialysis for more than seven years, and some of its clinical and radiological manifestations are reminiscent of the amyloid deposition disease seen in other disorders. Amyloid is present in many symptomatic sites in this syndrome but is also recognised to occur in association with carpal tunnel syndrome in non-dialysed patients and in the joints of asymptomatic dialysis patients. The amyloid in dialysis patients contains the protein β₂ microglobulin (β₂M), increased serum levels of which are found in patients with renal failure, including patients undergoing haemodialysis and those receiving continuous ambulatory peritoneal dialysis. Only in haemodialysis patients dialysed across conventional cellulose type membranes is the syndrome encountered.

If β₂M amyloid is the cause of the syndrome then removing it or preventing its accumulation should be the therapeutic goal. β₂M can be removed at dialysis if a highly permeable dialysis membrane material such as polyacrylonitrile is used instead of the conventional cellulose. The long term use of this membrane may well reduce the incidence of ‘amyloid arthropathy’.

There, is therefore, circumstantial evidence causally implicating β₂M amyloid in this syndrome. If all the disparate studies connect in the ways suggested then the logical therapeutic response would be to change all dialysis membranes. This has a variety of far reaching implications, and any decision needs to be based on sound scientific evidence. In particular, it is mandatory that the basic premise—amyloid causes the symptoms—is correct. It may well be, but I am still not convinced that the uncontrolled studies performed to date are adequate proof of this connection. Adequate control studies would be simple to undertake, and until it can be shown that amyloid is not a universal finding in the joints of patients receiving long term haemodialysis treatment, use of the term ‘amyloid arthropathy’ with all its attendant pathogenetic implications cannot be justified.

Department of Rheumatology. A J FREEMONT Stopford Building, Oxford Road, Manchester M13 9PT

References
3 Gejo F, Yamada T, Odani S. A new form of amyloid protein associated with chronic haemodialysis was identified as β₂ microglobulin. Biochem Biophys Res Commun 1985; 129: 701–6.

Amyloid arthropathy in haemodialysed patients

Sir, Two recent letters to the editor in the Annals about our paper on amyloid arthropathy in patients undergoing haemodialysis have suggested that the finding of amyloid in the synovial tissue or fluid, or both, of these patients could be interpreted as an epiphenomenon related mainly to aging and osteoarthritis.

We would like to point out the following facts. The patients presented a rather characteristic picture (persistent swelling of several joints, mainly shoulders, knees, wrists, finger tenosynovitis, and carpal tunnel syndrome). Their x rays did not show osteoarthritis but geodes and erosions that can lead to a destructive arthropathy, and as has been reported by other authors it is possible to demonstrate amyloid in the bone as well as in the synovial fluid. In a study that we have just finished we failed to show amyloid in synovial tissue and synovial fluid in 10 age matched patients with diverse rheumatic diseases. These facts make it improbable that aging and osteoarthrosis were the cause of the amyloid deposition in our cases, besides the fact that in these other circumstances the synovial deposits are minimal and, as far as I know, of little clinical significance.

The tinctorial characteristics of the amyloid, using the Wright technique, in our cases pointed towards an amyloid of immunological origin (AL amyloid). Recently the biochemical nature of amyloid in amyloidosis associated with haemodialysis has been identified as a protein homologous with normal plasmatic β₂ microglobulin which is known to accumulate in the circulation of patients with chronic renal failure and because of its size cannot be removed from the plasma during haemodialysis.

We have started immunohistochemical analysis of the amyloid found in our patients, and at this stage we have
Amyloid arthropathy in patients with chronic renal failure.
J P Huaux and C Nagant de Deuxchaisnes

Ann Rheum Dis 1986 45: 878-879
doi: 10.1136/ard.45.10.878

Updated information and services can be found at:
http://ard.bmj.com/content/45/10/878.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/